Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Detecting Gaming the System in Constraint-Based Tutors

  • Conference paper
User Modeling, Adaptation, and Personalization (UMAP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6075))

Abstract

Recently, detectors of gaming the system have been developed for several intelligent tutoring systems where the problem-solving process is reified, and gaming consists of systematic guessing and help abuse. Constraint-based tutors differ from the tutors where gaming detectors have previously been developed on several dimensions: in particular, higher-level answers are assessed according to a larger number of finer-grained constraints, and feedback is split into levels rather than an entire help sequence being available at any time. Correspondingly, help abuse behaviors differ, including behaviors such as rapidly repeating the same answer or blank answers to elicit answers. We use text replay labeling in combination with educational data mining methods to create a gaming detector for SQL-Tutor, a popular constraint-based tutor. This detector assesses gaming at the level of multiple-submission sequences and is accurate both at identifying gaming within submission sequences and at identifying how much each student games the system. It achieves only limited success, however, at distinguishing different types of gaming behavior from each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aleven, V., McLaren, B., Roll, I., Koedinger, K.: Toward meta-cognitive tutoring: A model of help seeking with a Cognitive Tutor. Artificial Intelligence and Education 16, 101–128 (2006)

    Google Scholar 

  2. Arroyo, I., Ferguson, K., Johns, J., Dragon, T., Meheranian, H., Fisher, D., Barto, A., Mahadevan, S., Woolf, B.P.: Repairing Disengagement with Non-Invasive Interventions. In: Proc. 13th Int. Conf. Artificial Intelligence in Education, pp. 195–202 (2007)

    Google Scholar 

  3. Baker, R.S.J.d., Corbett, A.T., Koedinger, K.R., Evenson, S., Roll, I., Wagner, A.Z., Naim, M., Raspat, J., Baker, D.J., Beck, J.E.: Adapting to When Students Game an Intelligent Tutoring System. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 392–401. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Baker, R.S., Corbett, A.T., Koedinger, K.R., Wagner, A.Z.: Off-Task Behavior in the Cognitive Tutor Classroom: When Students Game The System. In: Proc. ACM CHI 2004: Computer-Human Interaction, pp. 383–390 (2004)

    Google Scholar 

  5. Baker, R.S.J.d., Corbett, A.T., Roll, I., Koedinger, K.R.: Developing a Generalizable Detector of When Students Game the System. User Modeling and User-Adapted Interaction 18(3), 287–314 (2008)

    Article  Google Scholar 

  6. Baker, R.S.J.d., Corbett, A.T., Wagner, A.Z.: Human Classification of Low-Fidelity Replays of Student Actions. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 29–36. Springer, Heidelberg (2006)

    Google Scholar 

  7. Baker, R.S.J.d., de Carvalho, A.M.J.A.: Labeling Student Behavior Faster and More Precisely with Text Replays. In: Proc. 1st Int. Conf. Educational Data Mining, pp. 38–47 (2008)

    Google Scholar 

  8. Baker, R.S.J.d., de Carvalho, A.M.J.A., Raspat, J., Aleven, V., Corbett, A.T., Koedinger, K.R.: Educational Software Features that Encourage and Discourage Gaming the System. In: Proc. 14th Int. Conf. Artificial Intelligence in Education, pp. 475–482 (2009)

    Google Scholar 

  9. Beal, C.R., Qu, L., Lee, H.: Mathematics motivation and achievement as predictors of high school students’ guessing and help-seeking with instructional software. Journal of Computer Assisted Learning 24, 507–514 (2008)

    Google Scholar 

  10. Beck, J.: Engagement tracing: using response times to model student disengagement. In: Proc.12th Int. Conf. on Artificial Intelligence in Education, pp. 88–95 (2005)

    Google Scholar 

  11. Cheng, R., Vassileva, J.: Design and evaluation of an adaptive incentive mechanism for sustained educational online communities. User Modeling and User-Adapted Interaction 16(3/4), 312–348 (2006)

    Google Scholar 

  12. Corbett, A.T., Anderson, J.R.: Knowledge tracing: Modeling the acquisition of procedural knowledge. User Modeling and User-Adapted Interaction 4, 253–278 (1995)

    Article  Google Scholar 

  13. Gobel, P.: Student Off-task Behavior and Motivation in the CALL Classroom. International Journal of Pedagogies and Learning 4(4), 4–18 (2008)

    Google Scholar 

  14. Hanley, J.A., McNeil, B.J.: The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve. Radiology 143, 29–36 (1982)

    Google Scholar 

  15. Heilman, M., Eskenazi, M.: Language Learning: Challenges for Intelligent Tutoring Systems. In: Proc. Workshop on Intelligent Tutoring Systems for Ill-Defined Domains, Proc. 8th Int. Conf. Intelligent Tutoring Systems (2006)

    Google Scholar 

  16. Johns, J., Woolf, B.: A Dynamic Mixture Model to Detect Student Motivation and Proficiency. In: Proc. 21st National Conference on Artificial Intelligence (AAAI-06), pp. 163–168 (2006)

    Google Scholar 

  17. Mathews, M., Mitrovic, A.: How does students’ help-seeking behaviour affect learning? In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 363–372. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: YALE: Rapid Prototyping for Complex Data Mining Tasks. In: Proc. 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2006), pp. 935–940 (2006)

    Google Scholar 

  19. Mitrovic, A.: An Intelligent SQL Tutor on the Web. Artificial Intelligence in Education 13(2), 173–197 (2003)

    Google Scholar 

  20. Mitrovic, A., Martin, B.: Evaluating adaptive problem selection. In: De Bra, P.M.E., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 185–194. Springer, Heidelberg (2004)

    Google Scholar 

  21. Murray, R.C., Van Lehn, K.: Effects of dissuading unnecessary help requests while providing proactive help. In: Proc. 12th International Conference on Artificial Intelligence in Education, pp. 887–889 (2005)

    Google Scholar 

  22. Palmer, C.R., Faloutsos, C.: Density biased sampling: an improved method for data mining and clustering. In: Proc. 2000 ACM SIGMOD Int. Conf. Management of Data, pp. 82–92 (2000)

    Google Scholar 

  23. Rodrigo, M.M.T., Baker, R.S.J.d., Lagud, M.C.V., Lim, S.A.L., Macapanpan, A.F., Pascua, S.A.M.S., Santillano, J.Q., Sevilla, L.R.S., Sugay, J.O., Tep, S., Viehland, N.J.B.: Affect and Usage Choices in Simulation Problem Solving Environments. In: Proc. 13th Int. Conf. Artificial Intelligence in Education, pp. 145–152 (2007)

    Google Scholar 

  24. Schofield, J.W.: Computers and Classroom Culture. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  25. Shih, B., Koedinger, K., Scheines, R.: A Response Time Model for Bottom-Out Hints as Worked Examples. In: Proc. 1st Int. Conf. on Educational Data Mining, pp. 117–126 (2008)

    Google Scholar 

  26. Tait, K., Hartley, J., Anderson, R.C.: Feedback procedures in computer-assisted arithmetic instruction. British Journal of Educational Psychology 43, 161–171 (1973)

    Google Scholar 

  27. VanLehn, K.: The Behavior of Tutoring Systems. International Journal of Artificial Intelligence in Education 16(3), 227–265 (2006)

    Google Scholar 

  28. Walonoski, J.A., Heffernan, N.T.: Detection and Analysis of Off-Task Gaming Behavior in Intelligent Tutoring Systems. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 382–391. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  29. Wood, H., Wood, D.: Help Seeking, Learning, and Contingent Tutoring. Computers and Education 33, 153–169 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baker, R.S.J.d., Mitrović, A., Mathews, M. (2010). Detecting Gaming the System in Constraint-Based Tutors. In: De Bra, P., Kobsa, A., Chin, D. (eds) User Modeling, Adaptation, and Personalization. UMAP 2010. Lecture Notes in Computer Science, vol 6075. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13470-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13470-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13469-2

  • Online ISBN: 978-3-642-13470-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics