Abstract
Szemerédi’s regularity lemma proved to be a fundamental result in modern graph theory. It had a number of important applications and is a widely used tool in extremal combinatorics. For some further applications variants of the regularity lemma were considered. Here we discuss several of those variants and their relation to each other.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
N. Alon, A. Coja-Oghlan, H. Hàn, M. Kang, V. Rödl and M. Schacht, Quasirandomness and algorithmic regularity for graphs with general degree distributions, SIAM J. Comput, to appear.
N. Alon, E. Fischer, M. Krivelevich and M. Szegedy, Efficient testing of large graphs, Combinatorica, 20 (2000), no. 4, 451–476.
N. Alon and A. Shapira, A characterization of the (natural) graph properties testable with one-sided error, SIAM J. Comput, 37 (2008), no. 6, 1703–1727.
N. Alon and A. Shapira, Every monotone graph property is testable, SIAM J. Comput, 38 (2008), no. 2, 505–522.
T. Austin and T. Tao, On the testability and repair of hereditary hypergraph properties, submitted.
W. G. Brown, P. Erdős and V. T. Sós, Some extremal problems on r-graphs, New directions in the theory of graphs (Proc. Third Ann Arbor Conf., Univ. Michigan, Ann Arbor, Mich, 1971), Academic Press, New York, 1973, pp. 53–63.
V. Chvátal, V. Rödl, E. Szemerédi and W. T. Trotter, Jr., The Ramsey number of a graph with bounded maximum degree, J. Combin. Theory Ser. B, 34 (1983), no. 3, 239–243.
R. A. Duke, H. Lefmann and V. Rödl, A fast approximation algorithm for computing the frequencies of subgraphs in a given graph, SIAM J. Comput, 24 (1995), no. 3, 598–620.
P. Erdös and P. Turán, On some sequences of integers, J. London. Math. Soc, 11 (1936), 261–264.
P. Erdös, P. Frankl and V. Rödl, The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, Graphs Combin., 2 (1986), no. 2, 113–121.
P. Frankl and V. Rödl, Extremal problems on set systems, Random Structures Algorithms, 20 (2002), no. 2, 131–164.
A. Frieze and R. Kannan, Quick approximation to matrices and applications, Combinatorica, 19 (1999), no. 2, 175–220.
H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math., 34 (1978), 275–291 (1979).
H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for IP-systems and combinatorial theory, J. Analyse Math., 45 (1985), 117–168.
S. Gerke and A. Steger, The sparse regularity lemma and its applications, Surveys in combinatorics 2005, London Math. Soc. Lecture Note Ser., vol. 327, Cambridge Univ. Press, Cambridge, 2005, pp. 227–258.
O. Goldreich, S. Goldwasser and D. Ron, Property testing and its connection to learning and approximation, J. ACM, 45 (1998), no. 4, 653–750.
W. T. Gowers, Lower bounds of tower type for Szemerédi’s uniformity lemma, Geom. Funct. Anal, 7 (1997), no. 2, 322–337.
W. T. Gowers, Hypergraph regularity and the multidimensional Szemerédi theorem, Ann. of Math. (2), 166 (2007), no. 3, 897–946.
P. E. Haxell, Y. Kohayakawa and T. Luczak, The induced size-Ramsey number of cycles, Combin. Probab. Comput, 4 (1995), no. 3, 217–239.
P. E. Haxell, Y. Kohayakawa and T. Luczak, Turán’s extremal problem in random graphs: forbidding even cycles, J. Combin. Theory Ser. B, 64 (1995), no. 2, 273–287.
P. E. Haxell, Y. Kohayakawa and T. Luczak, Turán’s extremal problem in random graphs: forbidding odd cycles, Combinatorica, 16 (1996), no. 1, 107–122.
Y. Kohayakawa, Szemerédi’s regularity lemma for sparse graphs, Foundations of computational mathematics (Rio de Janeiro, 1997), pp. 216–230.
Y. Kohayakawa and V. Rödl, Szemerédi’s regularity lemma and quasi-randomness, Recent advances in algorithms and combinatorics, CMS Books Math./Ouvrages Math. SMC, vol. 11, Springer, New York, 2003, pp. 289–351.
J. Komlös, G. N. Sárközy and E. Szemerédi, Blow-up lemma, Combinatorica, 17 (1997), no. 1, 109–123.
J. Komlós, A. Shokoufandeh, M. Simonovits and E. Szemerédi, The regularity lemma and its applications in graph theory, Theoretical aspects of computer science (Tehran, 2000), Lecture Notes in Comput. Sci., vol. 2292, Springer, Berlin, 2002, pp. 84–112.
J. Komlös and M. Simonovits, Szemerédi’s regularity lemma and its applications in graph theory, Combinatorics, Paul Erdős is eighty, Vol. 2 (Keszthely, 1993), Bolyai Soc. Math. Stud., vol. 2, János Bolyai Math. Soc, Budapest, 1996, pp. 295–352.
L. Lovász and B. Szegedy, Testing properties of graphs and functions, Israel J. Math., to appear.
L. Lovász and B. Szegedy, Graph limits and testing hereditary graph properties, Tech. Report MSR-TR-2005-110, Microsoft Research, 2005.
L. Lovász and B. Szegedy, Limits of dense graph sequences, J. Combin. Theory Ser. B, 96 (2006), no. 6, 933–957.
L. Lovasz and B. Szegedy, Szemerédi’s lemma for the analyst, Geom. Funct. Anal, 17 (2007), no. 1, 252–270.
T. Luczak, Randomness and regularity, International Congress of Mathematicians. Vol. III, Eur. Math. Soc, Zürich, 2006, pp. 899–909.
B. Nagle and V. Rödl, Regularity properties for triple systems, Random Structures Algorithms, 23 (2003), no. 3, 264–332.
B. Nagle, V. Rödl and M. Schacht, The counting lemma for regular k-uniform hypergraphs, Random Structures Algorithms, 28 (2006), no. 2, 113–179.
V. Rödl, unpublished.
V. Rödl, Some developments in Ramsey theory, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) (Tokyo), Math. Soc. Japan, 1991, pp. 1455–1466.
V. Rödl and M. Schacht, Generalizations of the removal lemma, Combinatorica, 29 (2009), no. 4, 467–501.
V. Rödl and M. Schacht, Regular partitions of hypergraphs: regularity lemmas, Combin. Probab. Comput., 16 (2007), no. 6, 833–885.
V. Rödl, M. Schacht, E. Tengan and N. Tokushige, Density theorems and extremal hypergraph problems, Israel J. Math., 152 (2006), 371–380.
V. Rödl and J. Skokan, Regularity lemma for k-uniform hypergraphs, Random Structures Algorithms, 25 (2004), no. 1, 1–42.
V. Rödl and J. Skokan, Counting subgraphs in quasi-random 4-uniform hypergraphs, Random Structures Algorithms, 26 (2005), no. 1-2, 160–203.
V. Rödl and J. Skokan, Applications of the regularity lemma for uniform hypergraphs, Random Structures Algorithms, 28 (2006), no. 2, 180–194.
K. F. Roth, On certain sets of integers, J. London Math. Soc, 28 (1953), 104–109.
I. Z. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, Colloq. Math. Soc. János Bolyai, vol. 18, North-Holland, Amsterdam, 1978, pp. 939–945.
J. Solymosi, A note on a question of Erdős and Graham, Combin. Probab. Comput, 13 (2004), no. 2, 263–267.
V. T. Sös, P. Erdős and W. G. Brown, On the existence of triangulated spheres in 3-graphs, and related problems, Period. Math. Hungar., 3 (1973), no. 3-4, 221–228.
E. Szemerédi, On graphs containing no complete subgraph with 4 vertices, Mat. Lapok, 23 (1972), 113–116 (1973).
E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith., 27 (1975), 199–245, Collection of articles in memory of Jurii Vladimirovič Linnik.
E. Szemerédi, Regular partitions of graphs, Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), Colloq. Internat. CNRS, vol. 260, CNRS, Paris, 1978, pp. 399–401.
T. Tao, Szemerédi’s regularity lemma revisited, Contrib. Discrete Math., 1 (2006), no. 1, 8–28 (electronic).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 János Bolyai Mathematical Society and Springer-Verlag
About this chapter
Cite this chapter
Rödl, V., Schacht, M. (2010). Regularity Lemmas for Graphs. In: Katona, G.O.H., Schrijver, A., Szőnyi, T., Sági, G. (eds) Fete of Combinatorics and Computer Science. Bolyai Society Mathematical Studies, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13580-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-13580-4_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13579-8
Online ISBN: 978-3-642-13580-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)