Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Downward-Closure of Petri Net Languages

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6199))

Included in the following conference series:

Abstract

We show that the downward-closure of a Petri net language is effectively computable. This is mainly done by using the notions defined for showing decidability of the reachability problem of Petri nets. In particular, we rely on Lambert’s construction of marked graph transition sequences — special instances of coverability graphs that allow us to extract constructively the simple regular expression corresponding to the downward-closure. We also consider the remaining language types for Petri nets common in the literature. For all of them, we provide algorithms that compute the simple regular expressions of their downward-closure. As application, we outline an algorithm to automatically analyse the stability of a system against attacks from a malicious environment.

The first authors were supported by the French ANR projects Averiss and Veridyc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdulla, P.A., Collomb-Annichini, A., Bouajjani, A., Jonsson, B.: Using forward reachability analysis for verification of lossy channel systems. Form. Methods Syst. Des. 25(1), 39–65 (2004)

    Article  MATH  Google Scholar 

  2. Courcelle, B.: On constructing obstruction sets of words. Bulletin of the EATCS 44, 178–186 (1991)

    MATH  Google Scholar 

  3. Hack, M.: Decidability questions for Petri nets. Technical report, Cambridge, MA, USA (1976)

    Google Scholar 

  4. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. Soc. 2(3), 326–336 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  5. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2), 147–195 (1969)

    MATH  MathSciNet  Google Scholar 

  6. Kosaraju, S.R.: Decidability of reachability in vector addition systems (preliminary version). In: STOC, pp. 267–281. ACM, New York (1982)

    Google Scholar 

  7. Lambert, J.L.: Finding a partial solution to a linear system of equations in positive integers. Comput. Math. Applic. 15(3), 209–212 (1988)

    Article  MATH  Google Scholar 

  8. Lambert, J.L.: A structure to decide reachability in Petri nets. Theor. Comp. Sci. 99(1), 79–104 (1992)

    Article  MATH  Google Scholar 

  9. Mayr, E.W.: An algorithm for the general Petri net reachability problem. In: STOC, pp. 238–246. ACM, New York (1981)

    Google Scholar 

  10. Mayr, E.W.: An algorithm for the general Petri net reachability problem. SIAM J. Comp. 13(3), 441–460 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mayr, R.: Undecidable problems in unreliable computations. Theor. Comp. Sci. 297(1-3), 337–354 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Peterson, J.L.: Petri nets. ACM Computing Surveys 9(3), 223–252 (1977)

    Article  MATH  Google Scholar 

  13. Priese, L., Wimmel, H.: Petri-Netze. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  14. Wimmel, H.: Infinity of intermediate states is decidable for Petri nets. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 426–434. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Habermehl, P., Meyer, R., Wimmel, H. (2010). The Downward-Closure of Petri Net Languages. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14162-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14162-1_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14161-4

  • Online ISBN: 978-3-642-14162-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics