Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Parametric Qualitative Analysis of Ordinary Differential Equations: Computer Algebra Methods for Excluding Oscillations (Extended Abstract) (Invited Talk)

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6244))

Included in the following conference series:

  • 723 Accesses

Introduction

Investigating oscillations for parametric ordinary differential equations (ODEs) has many applications in science and engineering but is a very hard problem. Already for two dimensional polynomial systems this question is related to Hilbert’s 16th problem, which is still unsolved [1].

Using the theory of Hopf-bifurcations some non-numeric algorithmic methods have been recently developed to determine ranges of parameters for which some small stable limit cycle will occur in the system [2,3,4,5,6,7,8]. These algorithms give exact conditions for the existence of fixed points undergoing a Poincar’e Andronov-Hopf bifurcation that give birth to a small stable limit cycle under some general conditions which can be made algorithmic, too. If these conditions are not satisfied, one can be sure that there are no such fixed points, but unfortunately one cannot conclude that there are no limit cycles–which could arise by other means. Nevertheless, it is tempting to conjecture even in these cases that there are no oscillations, as has been done e.g. in [5,6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ilyashenko, Y.: Centennial history of Hilbert’s 16th Problem. Bull. Am. Math. Soc., New Ser. 39(3), 301–354 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Sturm, T., Weber, A., Abdel-Rahman, E.O., El Kahoui, M.: Investigating algebraic and logical algorithms to solve Hopf bifurcation problems in algebraic biology. Mathematics in Computer Science, Special issue on ‘Symbolic Computation in Biology’ 2(3), 493–515 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Niu, W., Wang, D.: Algebraic approaches to stability analysis of biological systems. Mathematics in Computer Science 1(3), 507–539 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sturm, T., Weber, A.: Investigating generic methods to solve Hopf bifurcation problems in algebraic biology. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 200–215. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Boulier, F., Lefranc, M., Lemaire, F., Morant, P., Ürgüplü, A.: On proving the absence of oscillations in models of genetic circuits. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) Ab 2007. LNCS, vol. 4545, pp. 66–80. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.E.: Applying a rigorous quasi-steady state approximation method for proving the absence of oscillations in models of genetic circuits. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 56–64. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. El Kahoui, M., Weber, A.: Symbolic equilibrium point analysis in parameterized polynomial vector fields. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing (CASC 2002), Yalta, Ukraine, pp. 71–83 (September 2002)

    Google Scholar 

  8. El Kahoui, M., Weber, A.: Deciding Hopf bifurcations by quantifier elimination in a software-component architecture. Journal of Symbolic Computation 30(2), 161–179 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hong, H., Liska, R., Steinberg, S.: Testing stability by quantifier elimination. Journal of Symbolic Computation 24(2), 161–187 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gatermann, K., Eiswirth, M., Sensse, A.: Toric ideals and graph theory to analyze hopf bifurcations in mass action systems. Journal of Symbolic Computation 40(6), 1361–1382 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bendixson, I.: Sur les curbes définiés par des équations différentielles. Acta Math. 24, 1–88 (1901)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42. Springer, Heidelberg (1983)

    Book  MATH  Google Scholar 

  13. Dulac, H.: Recherche des cycles limites. CR Acad. Sci. Paris 204, 1703–1706 (1937)

    MATH  Google Scholar 

  14. Weispfenning, V.: The complexity of linear problems in fields. Journal of Symbolic Computation 5(1&2), 3–27 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. Journal of Symbolic Computation 5(1-2), 29–35 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Strzebonski, A.: Solving systems of strict polynomial inequalities. Journal of Symbolic Computation 29(3), 471–480 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Strzebonski, A.W.: Cylindrical algebraic decomposition using validated numerics. J. Symb. Comput. 41(9), 1021–1038 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Brown, C.W.: QEPCAD B: A system for computing with semi-algebraic sets via cylindrical algebraic decomposition. ACM SIGSAM Bulletin 38(1), 23–24 (2004)

    Article  MathSciNet  Google Scholar 

  19. Dolzmann, A., Sturm, T.: REDLOG: Computer algebra meets computer logic. ACM SIGSAM Bulletin 31(2), 2–9 (1997)

    Article  Google Scholar 

  20. Sturm, T.: Redlog online resources for applied quantifier elimination. Acta Academiae Aboensis, Ser. B 67(2), 177–191 (2007)

    Google Scholar 

  21. Weispfenning, V.: Quantifier elimination for real algebra—the quadratic case and beyond. Applicable Algebra in Engineering Communication and Computing 8(2), 85–101 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dolzmann, A., Sturm, T.: Simplification of quantifier-free formulae over ordered fields. Journal of Symbolic Computation 24(2), 209–231 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Weispfenning, V.: A new approach to quantifier elimination for real algebra. In: Caviness, B., Johnson, J. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation, pp. 376–392. Springer, Wien (1998)

    Chapter  Google Scholar 

  24. Gilch, L.A.: Effiziente Hermitesche Quantorenelimination. Diploma thesis, Universität Passau, D-94030 Passau, Germany (September 2003)

    Google Scholar 

  25. Dolzmann, A., Gilch, L.A.: Generic Hermitian quantifier elimination. In: Buchberger, B., Campbell, J. (eds.) AISC 2004. LNCS (LNAI), vol. 3249, pp. 80–93. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  26. Sturm, T.: New domains for applied quantifier elimination. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2006. LNCS, vol. 4194, pp. 295–301. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  27. Lasaruk, A., Sturm, T.: Weak quantifier elimination for the full linear theory of the integers. A uniform generalization of Presburger arithmetic. Applicable Algebra in Engineering, Communication and Computing 18(6), 545–574 (2007)

    Article  MATH  Google Scholar 

  28. Lasaruk, A., Sturm, T.: Weak integer quantifier elimination beyond the linear case. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 275–294. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  29. Weispfenning, V.: Simulation and optimization by quantifier elimination. Journal of Symbolic Computation, Special issue on applications of quantifier elimination 24(2), 189–208 (1997)

    MathSciNet  MATH  Google Scholar 

  30. Muldowney, J.S.: Compound matrices and ordinary differential equations. Rocky Mt. J. Math. 20(4), 857–872 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Weber, A., Sturm, T., Abdel-Rahman, E.O.: Algorithmic global criteria for excluding oscillations. Bulletin of Mathematical Biology (2010); Accepted for publication. Special issue on “Algebraic Biology”

    Google Scholar 

  32. Goriely, A.: Integrability and nonintegrability of dynamical systems. World Scientific, Singapore (2001)

    Book  MATH  Google Scholar 

  33. Tóth, J.: Bendixson-type theorems with applications. Z. Angew. Math. Mech. 67, 31–35 (1987)

    Article  MATH  Google Scholar 

  34. Hars, V., Tóth, J.: On the inverse problem of reaction kinetics. In: Farkas, M. (ed.) Colloquia Mathematica Societatis Janos Bolyai, Qualitative Theory of Differential Equations, Szeged, Hungary, pp. 363–379 (1981)

    Google Scholar 

  35. Tuckwell, H.C., Wan, F.Y.M.: On the behavior of solutions in viral dynamical models. BioSystems 73(3), 157–161 (2004)

    Article  Google Scholar 

  36. Bonhoeffer, S., Coffin, J.M., Nowak, M.A.: Human immunodeficiency virus drug therapy and virus load. The Journal of Virology 71(4), 3275 (1997)

    Google Scholar 

  37. Feckan, M.: A generalization of Bendixson’s criterion. Proceedings American Mathematical Society 129(11), 3395–3400 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. She, Z., Xia, B., Xiao, R., Zheng, Z.: A semi-algebraic approach for asymptotic stability analysis. Nonlinear Analysis: Hybrid Systems 3(4), 588–596 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Rabier, P.J., Rheinboldt, W.C.: Theoretical and numerical analysis of differential-algebraic equations. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. VIII, pp. 183–540. North-Holland, Amsterdam (2002)

    Google Scholar 

  40. Riaza, R.: Differential-Algebraic Systems. World Scientific, Hackensack (2008)

    Book  MATH  Google Scholar 

  41. Seiler, W.M.: Involution — The Formal Theory of Differential Equations and its Applications in Computer Algebra. In: Algorithms and Computation in Mathematics, vol. 24. Springer, Berlin (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weber, A., Sturm, T., Seiler, W.M., Abdel-Rahman, E.O. (2010). Parametric Qualitative Analysis of Ordinary Differential Equations: Computer Algebra Methods for Excluding Oscillations (Extended Abstract) (Invited Talk). In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2010. Lecture Notes in Computer Science, vol 6244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15274-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15274-0_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15273-3

  • Online ISBN: 978-3-642-15274-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics