Introduction
Investigating oscillations for parametric ordinary differential equations (ODEs) has many applications in science and engineering but is a very hard problem. Already for two dimensional polynomial systems this question is related to Hilbert’s 16th problem, which is still unsolved [1].
Using the theory of Hopf-bifurcations some non-numeric algorithmic methods have been recently developed to determine ranges of parameters for which some small stable limit cycle will occur in the system [2,3,4,5,6,7,8]. These algorithms give exact conditions for the existence of fixed points undergoing a Poincar’e Andronov-Hopf bifurcation that give birth to a small stable limit cycle under some general conditions which can be made algorithmic, too. If these conditions are not satisfied, one can be sure that there are no such fixed points, but unfortunately one cannot conclude that there are no limit cycles–which could arise by other means. Nevertheless, it is tempting to conjecture even in these cases that there are no oscillations, as has been done e.g. in [5,6].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ilyashenko, Y.: Centennial history of Hilbert’s 16th Problem. Bull. Am. Math. Soc., New Ser. 39(3), 301–354 (2002)
Sturm, T., Weber, A., Abdel-Rahman, E.O., El Kahoui, M.: Investigating algebraic and logical algorithms to solve Hopf bifurcation problems in algebraic biology. Mathematics in Computer Science, Special issue on ‘Symbolic Computation in Biology’ 2(3), 493–515 (2009)
Niu, W., Wang, D.: Algebraic approaches to stability analysis of biological systems. Mathematics in Computer Science 1(3), 507–539 (2008)
Sturm, T., Weber, A.: Investigating generic methods to solve Hopf bifurcation problems in algebraic biology. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 200–215. Springer, Heidelberg (2008)
Boulier, F., Lefranc, M., Lemaire, F., Morant, P., Ürgüplü, A.: On proving the absence of oscillations in models of genetic circuits. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) Ab 2007. LNCS, vol. 4545, pp. 66–80. Springer, Heidelberg (2007)
Boulier, F., Lefranc, M., Lemaire, F., Morant, P.E.: Applying a rigorous quasi-steady state approximation method for proving the absence of oscillations in models of genetic circuits. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 56–64. Springer, Heidelberg (2008)
El Kahoui, M., Weber, A.: Symbolic equilibrium point analysis in parameterized polynomial vector fields. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing (CASC 2002), Yalta, Ukraine, pp. 71–83 (September 2002)
El Kahoui, M., Weber, A.: Deciding Hopf bifurcations by quantifier elimination in a software-component architecture. Journal of Symbolic Computation 30(2), 161–179 (2000)
Hong, H., Liska, R., Steinberg, S.: Testing stability by quantifier elimination. Journal of Symbolic Computation 24(2), 161–187 (1997)
Gatermann, K., Eiswirth, M., Sensse, A.: Toric ideals and graph theory to analyze hopf bifurcations in mass action systems. Journal of Symbolic Computation 40(6), 1361–1382 (2005)
Bendixson, I.: Sur les curbes définiés par des équations différentielles. Acta Math. 24, 1–88 (1901)
Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42. Springer, Heidelberg (1983)
Dulac, H.: Recherche des cycles limites. CR Acad. Sci. Paris 204, 1703–1706 (1937)
Weispfenning, V.: The complexity of linear problems in fields. Journal of Symbolic Computation 5(1&2), 3–27 (1988)
Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. Journal of Symbolic Computation 5(1-2), 29–35 (1988)
Strzebonski, A.: Solving systems of strict polynomial inequalities. Journal of Symbolic Computation 29(3), 471–480 (2000)
Strzebonski, A.W.: Cylindrical algebraic decomposition using validated numerics. J. Symb. Comput. 41(9), 1021–1038 (2006)
Brown, C.W.: QEPCAD B: A system for computing with semi-algebraic sets via cylindrical algebraic decomposition. ACM SIGSAM Bulletin 38(1), 23–24 (2004)
Dolzmann, A., Sturm, T.: REDLOG: Computer algebra meets computer logic. ACM SIGSAM Bulletin 31(2), 2–9 (1997)
Sturm, T.: Redlog online resources for applied quantifier elimination. Acta Academiae Aboensis, Ser. B 67(2), 177–191 (2007)
Weispfenning, V.: Quantifier elimination for real algebra—the quadratic case and beyond. Applicable Algebra in Engineering Communication and Computing 8(2), 85–101 (1997)
Dolzmann, A., Sturm, T.: Simplification of quantifier-free formulae over ordered fields. Journal of Symbolic Computation 24(2), 209–231 (1997)
Weispfenning, V.: A new approach to quantifier elimination for real algebra. In: Caviness, B., Johnson, J. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation, pp. 376–392. Springer, Wien (1998)
Gilch, L.A.: Effiziente Hermitesche Quantorenelimination. Diploma thesis, Universität Passau, D-94030 Passau, Germany (September 2003)
Dolzmann, A., Gilch, L.A.: Generic Hermitian quantifier elimination. In: Buchberger, B., Campbell, J. (eds.) AISC 2004. LNCS (LNAI), vol. 3249, pp. 80–93. Springer, Heidelberg (2004)
Sturm, T.: New domains for applied quantifier elimination. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2006. LNCS, vol. 4194, pp. 295–301. Springer, Heidelberg (2006)
Lasaruk, A., Sturm, T.: Weak quantifier elimination for the full linear theory of the integers. A uniform generalization of Presburger arithmetic. Applicable Algebra in Engineering, Communication and Computing 18(6), 545–574 (2007)
Lasaruk, A., Sturm, T.: Weak integer quantifier elimination beyond the linear case. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 275–294. Springer, Heidelberg (2007)
Weispfenning, V.: Simulation and optimization by quantifier elimination. Journal of Symbolic Computation, Special issue on applications of quantifier elimination 24(2), 189–208 (1997)
Muldowney, J.S.: Compound matrices and ordinary differential equations. Rocky Mt. J. Math. 20(4), 857–872 (1990)
Weber, A., Sturm, T., Abdel-Rahman, E.O.: Algorithmic global criteria for excluding oscillations. Bulletin of Mathematical Biology (2010); Accepted for publication. Special issue on “Algebraic Biology”
Goriely, A.: Integrability and nonintegrability of dynamical systems. World Scientific, Singapore (2001)
Tóth, J.: Bendixson-type theorems with applications. Z. Angew. Math. Mech. 67, 31–35 (1987)
Hars, V., Tóth, J.: On the inverse problem of reaction kinetics. In: Farkas, M. (ed.) Colloquia Mathematica Societatis Janos Bolyai, Qualitative Theory of Differential Equations, Szeged, Hungary, pp. 363–379 (1981)
Tuckwell, H.C., Wan, F.Y.M.: On the behavior of solutions in viral dynamical models. BioSystems 73(3), 157–161 (2004)
Bonhoeffer, S., Coffin, J.M., Nowak, M.A.: Human immunodeficiency virus drug therapy and virus load. The Journal of Virology 71(4), 3275 (1997)
Feckan, M.: A generalization of Bendixson’s criterion. Proceedings American Mathematical Society 129(11), 3395–3400 (2001)
She, Z., Xia, B., Xiao, R., Zheng, Z.: A semi-algebraic approach for asymptotic stability analysis. Nonlinear Analysis: Hybrid Systems 3(4), 588–596 (2009)
Rabier, P.J., Rheinboldt, W.C.: Theoretical and numerical analysis of differential-algebraic equations. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. VIII, pp. 183–540. North-Holland, Amsterdam (2002)
Riaza, R.: Differential-Algebraic Systems. World Scientific, Hackensack (2008)
Seiler, W.M.: Involution — The Formal Theory of Differential Equations and its Applications in Computer Algebra. In: Algorithms and Computation in Mathematics, vol. 24. Springer, Berlin (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Weber, A., Sturm, T., Seiler, W.M., Abdel-Rahman, E.O. (2010). Parametric Qualitative Analysis of Ordinary Differential Equations: Computer Algebra Methods for Excluding Oscillations (Extended Abstract) (Invited Talk). In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2010. Lecture Notes in Computer Science, vol 6244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15274-0_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-15274-0_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15273-3
Online ISBN: 978-3-642-15274-0
eBook Packages: Computer ScienceComputer Science (R0)