Abstract
Reversible computing is the study of computation models that exhibit both forward and backward determinism. Understanding the fundamental properties of such models is not only relevant for reversible programming, but has also been found important in other fields, e.g., bidirectional model transformation, program transformations such as inversion, and general static prediction of program properties.
Historically, work on reversible computing has focussed on reversible simulations of irreversible computations. Here, we take the viewpoint that the property of reversibility itself should be the starting point of a computational theory of reversible computing. We provide a novel semantics-based approach to such a theory, using reversible Turing machines (RTMs) as the underlying computation model.
We show that the RTMs can compute exactly all injective, computable functions. We find that the RTMs are not strictly classically universal, but that they support another notion of universality; we call this RTM-universality. Thus, even though the RTMs are sub-universal in the classical sense, they are powerful enough as to include a self-interpreter. Lifting this to other computation models, we propose r-Turing completeness as the ‘gold standard’ for computability in reversible computation models.
Chapter PDF
Similar content being viewed by others
References
Abramov, S., Glück, R.: Principles of inverse computation and the universal resolving algorithm. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp. 269–295. Springer, Heidelberg (2002)
Axelsen, H.B.: Clean translation of an imperative reversible programming language. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 144–163. Springer, Heidelberg (2011)
Axelsen, H.B., Glück, R., Yokoyama, T.: Reversible machine code and its abstract processor architecture. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 56–69. Springer, Heidelberg (2007)
Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and Development 17, 525–532 (1973)
Feynman, R.: Quantum mechanical computers. Optics News 11, 11–20 (1985)
Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators for bi-directional tree transformations: A linguistic approach to the view update problem. ACM Trans. Prog. Lang. Syst. 29(3), article 17 (2007)
Glück, R., Sørensen, M.: A roadmap to metacomputation by supercompilation. In: Danvy, O., Thiemann, P., Glück, R. (eds.) Partial Evaluation. LNCS, vol. 1110, pp. 137–160. Springer, Heidelberg (1996)
Jones, N.D.: Computability and Complexity: From a Programming Language Perspective. In: Foundations of Computing. MIT Press, Cambridge (1997)
Landauer, R.: Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 5(3), 183–191 (1961)
McCarthy, J.: The inversion of functions defined by Turing machines. In: Automata Studies, pp. 177–181. Princeton University Press, Princeton (1956)
Morita, K.: Reversible computing and cellular automata — A survey. Theoretical Computer Science 395(1), 101–131 (2008)
Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine. Trans. IEICE, E 72(3), 223–228 (1989)
Morita, K., Yamaguchi, Y.: A universal reversible turing machine. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 90–98. Springer, Heidelberg (2007)
Mu, S.-C., Hu, Z., Takeichi, M.: An algebraic approach to bi-directional updating. In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 2–20. Springer, Heidelberg (2004)
Schellekens, M.: MOQA; unlocking the potential of compositional static average-case analysis. Journal of Logic and Algebraic Programming 79(1), 61–83 (2010)
Thomsen, M.K., Axelsen, H.B.: Parallelization of reversible ripple-carry adders. Parallel Processing Letters 19(2), 205–222 (2009)
Thomsen, M.K., Glück, R., Axelsen, H.B.: Reversible arithmetic logic unit for quantum arithmetic. Journal of Physics A: Mathematics and Theoretical 42(38), 2002 (2010)
Toffoli, T.: Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980)
van de Snepscheut, J.L.A.: What computing is all about. Springer, Heidelberg (1993)
Van Rentergem, Y., De Vos, A.: Optimal design of a reversible full adder. International Journal of Unconventional Computing 1(4), 339–355 (2005)
Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming language. In: Proceedings of Computing Frontiers, pp. 43–54. ACM Press, New York (2008)
Yokoyama, T., Axelsen, H.B., Glück, R.: Reversible flowchart languages and the structured reversible program theorem. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 258–270. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Axelsen, H.B., Glück, R. (2011). What Do Reversible Programs Compute?. In: Hofmann, M. (eds) Foundations of Software Science and Computational Structures. FoSSaCS 2011. Lecture Notes in Computer Science, vol 6604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19805-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-19805-2_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19804-5
Online ISBN: 978-3-642-19805-2
eBook Packages: Computer ScienceComputer Science (R0)