Abstract
Considering an initial set of terms E, a rewriting relation \(\mathcal{R}\) and a goal set of terms Bad, reachability analysis in term rewriting tries to answer to the following question: does there exists at least one term of Bad that can be reached from E using the rewriting relation \(\mathcal{R}\)?
Some of the approaches try to show that there exists at least one term of Bad reachable from E using the rewriting relation \(\mathcal{R}\) by computing the set of reachable terms. Some others tackle the unreachability problem i.e. no term of Bad is reachable by rewriting from E. For the latter, over-approximations are computed. A main obstacle is to be able to compute an over-approximation precise enough that does not intersect Bad i.e. a conclusive approximation. This notion of precision is often defined by a very technical parameter of techniques implementing this over-approximation approach. In this paper, we propose a new characterization of conclusive approximations by logical formulae generated from a new kind of automata called symbolic tree automata. Solving a such formula leads automatically to a conclusive approximation without extra technical parameters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)
Boichut, Y., Genet, T., Jensen, T., Leroux, L.: Rewriting Approximations for Fast Prototyping of Static Analyzers. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 48–62. Springer, Heidelberg (2007)
Boichut, Y., Héam, P.-C.: A theoretical limit for safety verification techniques with regular fix-point computations. Inf. Process. Lett. 108(1), 1–2 (2008)
Boichut, Y., Héam, P.-C., Kouchnarenko, O.: Approximation-based tree regular model-checking. Nord. J. Comput. 14(3), 216–241 (2008)
Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular tree model checking. ENTCS 149(1), 37–48 (2006)
Boyer, B., Genet, T., Jensen, T.: Certifying a Tree Automata Completion Checker. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 523–538. Springer, Heidelberg (2008)
Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding, C., Tison, S., Tommasi, M.: Tree automata techniques and applications (2008)
Feuillade, G., Genet, T., Viet TriemTong, V.: Reachability Analysis over Term Rewriting Systems. Journal of Automated Reasonning 33(3-4), 341–383 (2004)
Gallagher, J., Rosendahl, M.: Approximating term rewriting systems: a horn clause specification and its implementation. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 682–696. Springer, Heidelberg (2008)
Genet, T.: Decidable approximations of sets of descendants and sets of normal forms. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 151–165. Springer, Heidelberg (1998)
Genet, T., Klay, F.: Rewriting for Cryptographic Protocol Verification. In: McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 271–290. Springer, Heidelberg (2000)
Genet, T., Rusu, R.: Equational tree automata completion. JSC 45, 574–597 (2010)
Gilleron, R., Tison, S.: Regular tree languages and rewrite systems. Fundamenta Informaticae 24, 157–175 (1995)
Gyenizse, P., Vágvölgyi, S.: Linear Generalized Semi-Monadic Rewrite Systems Effectively Preserve Recognizability. TCS 194(1-2), 87–122 (1998)
Henriksen, J., Jensen, J., Jørgensen, M., Klarlund, N., Paige, B., Rauhe, T., Sandholm, A.: Mona: Monadic second-order logic in practice. In: Brinksma, E., Steffen, B., Cleaveland, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 89–110. Springer, Heidelberg (1995)
Jacquemard, F.: Decidable approximations of term rewriting systems. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 362–376. Springer, Heidelberg (1996)
Monniaux, D.: Abstracting Cryptographic Protocols with Tree Automata. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 149–163. Springer, Heidelberg (1999)
Takai, T.: A Verification Technique Using Term Rewriting Systems and Abstract Interpretation. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 119–133. Springer, Heidelberg (2004)
Takai, T., Kaji, Y., Seki, H.: Right-linear finite-path overlapping term rewriting systems effectively preserve recognizability. In: Bachmair, L. (ed.) RTA 2000. LNCS, vol. 1833, pp. 246–260. Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Boichut, Y., Dao, TBH., Murat, V. (2011). Characterizing Conclusive Approximations by Logical Formulae. In: Delzanno, G., Potapov, I. (eds) Reachability Problems. RP 2011. Lecture Notes in Computer Science, vol 6945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24288-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-24288-5_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24287-8
Online ISBN: 978-3-642-24288-5
eBook Packages: Computer ScienceComputer Science (R0)