Abstract
In this paper, we describe how we captured and investigated incidence reasoning in Hilbert’s Foundations of Geometry by using a new discovery tool integrated into an interactive proof assistant. Our tool exploits concurrency, inferring facts independently of the user with the incomplete proof as a guide. It explores the proof space, contributes tedious lemmas and discovers alternative proofs. We show how this tool allowed us to write readable formalised proof-scripts that correspond very closely to Hilbert’s prose arguments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Birkhoff, G., Bennett, M.: Hilbert’s Grundlagen der Geometrie. Rendiconti del Circolo Matematico di Palermo 36, 343–389 (1987)
Boulton, R.: Efficiency in a Fully-Expansive Theorem Prover. Ph.D. thesis. Cambridge University (1993)
Boyer, C.B.: A History of Mathematics. John Wiley & Sons (1991)
de Bruijn, N.G.: The Mathematical Vernacular, a language for Mathematics with typed sets. In: Dybjer, P., et al. (eds.) Proceedings from the Workshop on Programming Logic, vol. 37 (1987)
Euclid: Elements (1998), http://aleph0.clarku.edu/~djoyce/java/elements/elements.html
Hales, T.: Introduction to the Flyspeck Project, http://drops.dagstuhl.de/opus/newlinevolltexte/2006/432/pdf/05021.HalesThomas.Paper.432.pdf
Harrison, J.: HOL Light: a Tutorial Introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)
Heath, T.L.: Euclid: The Thirteen Books of The Elements, vol. 1. Dover Publications (1956)
Hilbert, D.: Foundations of Geometry. Open Court Classics, 10th edn. (1971)
Magaud, N., Narboux, J., Schreck, P.: Formalizing Desargues’ theorem in Coq using ranks. In: Symposium on Applied Computing, pp. 1110–1115 (2009)
Meikle, L.I., Fleuriot, J.D.: Formalizing Hilbert’s Grundlagen in Isabelle/Isar. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 319–334. Springer, Heidelberg (2003)
Meikle, L.I., Fleuriot, J.D.: Mechanical Theorem Proving in Computational Geometry. In: Hong, H., Wang, D. (eds.) ADG 2004. LNCS (LNAI), vol. 3763, pp. 1–18. Springer, Heidelberg (2006)
Gordon, M., Wadsworth, C.P., Milner, R.: Edinburgh LCF. LNCS, vol. 78. Springer, Heidelberg (1979)
Milner, R., Bird, R.S.: The Use of Machines to Assist in Rigorous Proof [and Discussion]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 312(1522), 411–422 (1984)
Moore, E.H.: On the projective axioms of geometry. Transactions of the American Mathematical Society 3, 142–158 (1902)
Scott, P.: Mechanising Hilbert’s Foundations of Geometry in Isabelle. Master’s thesis. University of Edinburgh (2008)
Scott, P., Fleuriot, J.: Composable Discovery Engines for Interactive Theorem Proving. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 370–375. Springer, Heidelberg (2011)
Weyl, H.: David Hilbert and his mathematical work. Bulletin of the American Mathematical Society 50, 635 (1944)
Wiedijk, F.: Mizar Light for HOL Light. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 378–394. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Scott, P., Fleuriot, J. (2011). An Investigation of Hilbert’s Implicit Reasoning through Proof Discovery in Idle-Time. In: Schreck, P., Narboux, J., Richter-Gebert, J. (eds) Automated Deduction in Geometry. ADG 2010. Lecture Notes in Computer Science(), vol 6877. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25070-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-25070-5_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25069-9
Online ISBN: 978-3-642-25070-5
eBook Packages: Computer ScienceComputer Science (R0)