Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automatic Text Summarization: Past, Present and Future

  • Chapter
  • First Online:
Multi-source, Multilingual Information Extraction and Summarization

Abstract

Automatic text summarization, the computer-based production of condensed versions of documents, is an important technology for the information society. Without summaries it would be practically impossible for human beings to get access to the ever growing mass of information available online. Although research in text summarization is over 50 years old, some efforts are still needed given the insufficient quality of automatic summaries and the number of interesting summarization topics being proposed in different contexts by end users (“domain-specific summaries”, “opinion-oriented summaries”, “update summaries”, etc.). This paper gives a short overview of summarization methods and evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Rouge was inspired by BLEU, a measure used in the evaluation of machine translation also based on the comparison of n-grams [52].

  2. 2.

    Hovy et al. [19] also proposed an approach of this kind with the notion of Basic Units.

References

  1. Barzilay, R.: Modeling local coherence: an entity-based approach. In: Proceedings of ACL 2005, Michigan, pp. 141–148. Association for Computational Linguistics, Stroudsburg (2005)

    Google Scholar 

  2. Barzilay, R., Elhadad, M.: Using lexical chains for text summarization. In: Proceedings of the ACL/EACL’97 Workshop on Intelligent Scalable Text Summarization, Madrid, pp. 10–17 (1997)

    Google Scholar 

  3. Barzilay, R., Elhadad, N., Mckeown, K.R.: Inferring strategies for sentence ordering in multidocument news summarization. J. Artif. Intell. Res. 17, 2002 (2002)

    Google Scholar 

  4. Barzilay, R., Lapata, M.: Modeling local coherence: an entity-based approach. Comput. Linguist. 34(1), 1–34 (2008)

    Google Scholar 

  5. Benbrahim, M., Ahmad, K.: Text summarisation: the role of lexical cohesion analysis. In: The New Review of Document and Text Management, pp. 321–335. Taylor Graham Pub., London, UK (1995)

    Google Scholar 

  6. Bossard, A., Généreux, M., Poibeau, T.: Cbseas, a summarization system – integration of opinion mining techniques to summarize blogs. In: Proceedings of the 12th Meeting of the European Association for Computational Linguistics (system demonstration), EACL ’09, Athens. Association for Computational Linguistics, Stroudsburg (2009)

    Google Scholar 

  7. Carbonell, J.G., Goldstein, J.: The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: Research and Development in Information Retrieval, pp. 335–336. The Association for Computing Machinery, New York (1998)

    Google Scholar 

  8. Chambers, N., Jurafsky, D.: Unsupervised learning of narrative schemas and their participants. In: ACL/AFNLP, Singapore, pp. 602–610. Association for Computational Linguistics, Stroudsburg (2009)

    Google Scholar 

  9. Cohn, T., Lapata, M.: Sentence compression as tree transduction. J. Artif. Intell. Res. (JAIR) 34, 637–674 (2009)

    Google Scholar 

  10. Dang, H.T., Owczarzak, K.: Overview of the tac 2008 opinion question answering and summarization tasks. In: Proceedings of the TAC 2008 Workshop, Notebook Papers and Results, Gaithersburg, MD, USA. NIST, Gaithersburg, MD, USA (2008)

    Google Scholar 

  11. DeJong, G.: An overview of the FRUMP system. In: Lehnert, W., Ringle, M. (eds.) Strategies for Natural Language Processing, pp. 149–176. Lawrence Erlbaum Associates, Hillsdale (1982)

    Google Scholar 

  12. Edmundson, H.: New methods in automatic extracting. J. Assoc. Comput. Mach. 16(2), 264–285 (1969)

    Google Scholar 

  13. Endres-Niggemeyer, B.: SimSum: an empirically founded simulation of summarizing. Inf. Process. Manag. 36, 659–682 (2000)

    Google Scholar 

  14. Erkan, G., Radev, D.: Lexrank: graph-based lexical centrality as salience in text summarization. J. Artif. Intell. Res. (JAIR) 22, 457–479 (2004)

    Google Scholar 

  15. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT, Cambridge (1998)

    Google Scholar 

  16. Grishman, R.: Information extraction: techniques and challenges. In: Pazienza, M.T. (ed.) Information Extraction. A Multidisciplinary Approach to an Emerging Information Technology. Lecture Notes in Artificial Intelligence, vol. 1299. Springer, Berlin/New York (1997)

    Google Scholar 

  17. Harman, D., Liberman, M.: Tipster Complete. Technical Report, University of Pennsylvania, Philadelphia, USA (1993)

    Google Scholar 

  18. Hasler, L., Orãsan, C., Mitkov, R.: Building better corpora for summarisation. In: Proceedings of Corpus Linguistics, Lancaster, pp. 309–319 (2003)

    Google Scholar 

  19. Hovy, E., Lin, C.Y., Zhou, L., Fukumoto, J.: Automated summarization evaluation with basic elements. In: Proceedings of the Fifth Conference on Language Resources and Evaluation (LREC), Genoa, Italy. ELDA, Paris, France (2006)

    Google Scholar 

  20. Jing, H.: Using hidden markov modeling to decompose human-written summaries. Comput. Linguist. 28, 527–543 (2002)

    Google Scholar 

  21. Jing, H., McKeown, K.: The decomposition of human-written summary sentences. In: Hearst, M., Gey, F., Tong, R. (eds.) Proceedings of SIGIR’99 – 22nd International Conference on Research and Development in Information Retrieval, University of California, Berkeley, pp. 129–136 (1999)

    Google Scholar 

  22. Jing, H., McKeown, K.: Cut and paste based text summarization. In: Proceedings of the 1st Meeting of the North American Chapter of the Association for Computational Linguistics, Seattle, pp. 178–185. Association for Computational Linguistics, Stroudsburg (2000)

    Google Scholar 

  23. Jones, K.S.: Automatic summarising: the state of the art. Inf. Process. Manage. 43(6), 1449–1481 (2007)

    Google Scholar 

  24. Kabadjov, M.A., Atkinson, M., Steinberger, J., Steinberger, R., der Goot, E.V.: Newsgist: a multilingual statistical news summarizer. In: ECML/PKDD (3), Barcelona, pp. 591–594. Springer, Berlin/New York (2010)

    Google Scholar 

  25. Knight, K., Marcu, D.: Statistics-based summarization – step one: sentence compression. In: Proceedings of the 17th National Conference of the American Association for Artificial Intelligence, Austin. AAAI, Palo Alto, CA, USA (2000)

    Google Scholar 

  26. Kupiec, J., Pedersen, J., Chen, F.: A trainable document summarizer. In: Proceedings of the 18th ACM-SIGIR Conference, Seattle, pp. 68–73. ACM, New York (1995)

    Google Scholar 

  27. Lapata, M.: Probabilistic text structuring: experiments with sentence ordering. In: Proceedings of the 41st Meeting of the Association of Computational Linguistics, Sapporo, pp. 545–552. Association for Computational Linguistics, Stroudsburg (2003)

    Google Scholar 

  28. Li, P., Jiang, J., Wang, Y.: Generating templates of entity summaries with an entity-aspect model and pattern mining. In: Proceedings of ACL, Uppsala. Association for Computational Linguistics, Uppsala (2010)

    Google Scholar 

  29. Liddy, E.D.: The discourse-level structure of empirical abstracts: an exploratory study. Inf. Process. Manag. 27(1), 55–81 (1991)

    Google Scholar 

  30. Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. In: Proceedings of the Workshop on Text Summarization Branches Out (WAS 2004), Barcelona (2004)

    Google Scholar 

  31. Lin, C., Hovy, E.: Identifying topics by position. In: Fifth Conference on Applied Natural Language Processing, Washington, DC, pp. 283–290. Association for Computational Linguistics, Stroudsburg (1997)

    Google Scholar 

  32. Lin, C.Y., Hovy, E.: The automated acquisition of topic signatures for text summarization. In: Proceedings of the COLING Conference, Saarbrumlcken. Association for Computational Linguistics, Stroudsburg (2000)

    Google Scholar 

  33. Lloret, E., Palomar, M.: Text summarisation in progress: a literature review. Artif. Intell. Rev. 37(1), 1–41 (2011)

    Google Scholar 

  34. Louis, A., Nenkova, A.: Automatically evaluating content selection in summarization without human models. In: Proceedings of EMNLP’09, Singapore, pp. 306–314. Association for Computational Linguistics, Stroudsburg (2009)

    Google Scholar 

  35. Luhn, H.P.: The automatic creation of literature abstracts. IBM J. Res. Dev. 2(2), 159–165 (1958)

    Google Scholar 

  36. Mani, I.: Automatic Text Summarization. John Benjamins, Amsterdam/Philadelphia (2001)

    Google Scholar 

  37. Mani, I., Klein, G., House, D., Hirschman, L., Firmin, T., Sundheim, B.: Summac: a text summarization evaluation. Nat. Lang. Engin. 8, 43–68 (2002). DOI 10.1017/S1351324901002741. http://portal.acm.org/citation.cfm?id=973860.973864

    Google Scholar 

  38. Mani, I., Maybury, M.T.: Advances in Automatic Text Summarization. MIT, Cambridge (1999)

    Google Scholar 

  39. Mann, W., Thompson, S.: Rhetorical structure theory: towards a functional theory of text organization. Text 8(3), 243–281 (1988)

    Google Scholar 

  40. Marcu, D.: From discourse structures to text summaries. In: The Proceedings of the ACL’97/EACL’97 Workshop on Intelligent Scalable Text Summarization, Madrid, pp. 82–88 (1997)

    Google Scholar 

  41. Maynard, D., Tablan, V., Cunningham, H., Ursu, C., Saggion, H., Bontcheva, K., Wilks, Y.: Architectural elements of language engineering robustness. J. Nat. Lang. Engin. Spec. Issue Robust Methods Anal. Nat. Lang. Data 8(2/3), 257–274 (2002)

    Google Scholar 

  42. Mihalcea, R.: Language independent extractive summarization. In: AAAI, Pittsburgh, Pennsylvania, pp. 1688–1689. Association for Computational Linguistics, Stroudsburg (2005)

    Google Scholar 

  43. Mihalcea, R., Tarau, P.: TextRank: Bringing order into texts. In: Proceedings of EMNLP-04and the 2004 Conference on Empirical Methods in Natural Language Processing, Barcelona (2004)

    Google Scholar 

  44. Nenkova, A., Passonneau, R., McKeown, K.: The pyramid method: incorporating human content selection variation in summarization evaluation. ACM Trans. Speech Lang. Process. 4(2), 1–23 (2007)

    Google Scholar 

  45. Hoa Trang Dang (ed.): NIST: Proceedings of the Text Analysis Conference. NIST, Gaithesburg (2008)

    Google Scholar 

  46. Okumura, M., Fukusima, T., Nanba, H., Hirao, T.: Text summarization challenge 2 text summarization evaluation at ntcir workshop 3. SIGIR Forum 38(1), 29–38 (2004)

    Google Scholar 

  47. Ono, K., Sumita, K., Miike, S.: Abstract generation based on rhetorical structure extraction. In: Proceedings of the International Conference on Computational Linguistics, Kyoto, Japan, pp. 344–348. ACL, Stroudsburg, USA (1994)

    Google Scholar 

  48. Over, P., Dang, H., Harman, D.: DUC in context. Inf. Process. Manag. 43, 1506–1520 (2007). DOI 10.1016/j.ipm.2007.01.019. http://portal.acm.org/citation.cfm?id=1284916.1285157

  49. Owczarzak, K., Dang, H.: Overview of the tac 2010 summarization track. In: Proceedings of TAC 2010, NIST, Gaithersburg, MD, USA (2010)

    Google Scholar 

  50. Paice, C.D.: Constructing literature abstracts by computer: technics and prospects. Inf. Process. Manag. 26(1), 171–186 (1990)

    Google Scholar 

  51. Paice, C.D., Oakes, M.P.: A Concept-Based Method for Automatic Abstracting. Technical Report 27, Library and Information Commission, Wetherby (1999)

    Google Scholar 

  52. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, ACL ’02, Philadelphia, pp. 311–318 (2002)

    Google Scholar 

  53. Radev, D., Allison, T., Blair-Goldensohn, S., Blitzer, J., Çelebi, A., Dimitrov, S., Drabek, E., Hakim, A., Lam, W., Liu, D., Otterbacher, J., Qi, H., Saggion, H., Teufel, S., Topper, M., Winkel, A., Zhang, Z.: MEAD — A platform for multidocument multilingual text summarization. In: Conference on Language Resources and Evaluation (LREC), Lisbon (2004)

    Google Scholar 

  54. Radev, D.R., Jing, H., Budzikowska, M.: Centroid-based summarization of multiple documents: sentence extraction, utility-based evaluation, and user studies. In: ANLP/NAACL Workshop on Summarization, Seattle (2000)

    Google Scholar 

  55. Radev, D.R., McKeown, K.R.: Generating natural language summaries from multiple on-line sources. Comput. Linguist. 24(3), 469–500 (1998)

    Google Scholar 

  56. Radev, D.R., Teufel, S., Saggion, H., Lam, W., Blitzer, J., Qi, H., Çelebi, A., Liu, D., Drabek, E.: Evaluation challenges in large-scale document summarization. In: Proceedings of the 41st Annual Meeting on Association for Computational Linguistics - Vol. 1, ACL ’03, Sapporo, Japan, pp. 375–382. ACL, Stroudsburg, USA (2003)

    Google Scholar 

  57. Saggion, H.: Multilingual multidocument summarization tools and evaluation. In: Proceedings of LREC 2006, Genoa, Italy. ELDA, Paris, France (2006)

    Google Scholar 

  58. Saggion, H.: Experiments on semantic-based clustering for cross-document coreference. In: Proceedings of the Third Joint International Conference on Natural Language Processing, AFNLP, Hyderabad, pp. 149–156 (2008)

    Google Scholar 

  59. Saggion, H.: SUMMA: a robust and adaptable summarization tool. Traitement Automatique des Langues 49(2), 103–125 (2008)

    Google Scholar 

  60. Saggion, H.: A classification algorithm for predicting the structure of summaries. In: UCNLG+Sum ’09: Proceedings of the 2009 Workshop on Language Generation and Summarisation, pp. 31–38. Association for Computational Linguistics, Morristown (2009)

    Google Scholar 

  61. Saggion, H.: Learning predicate insertion rules for document abstracting. In: CICLing, Tokyo, pp. 301–312. Springer, Berlin/New York (2011)

    Google Scholar 

  62. Saggion, H., Gaizauskas, R.: Multi-document summarization by cluster/profile relevance and redundancy removal. In: Proceedings of the Document Understanding Conference 2004, NIST, Boston (2004)

    Google Scholar 

  63. Saggion, H., Lapalme, G.: Generating indicative-informative summaries with sumUM. Comput. Linguist. 28, 497–526 (2002)

    Google Scholar 

  64. Saggion, H., Radev, D., Teufel, S., Lam, W.: Meta-evaluation of summaries in a cross-lingual environment using content-based metrics. In: Proceedings of COLING 2002, Taipei, pp. 849–855. Association for Computational Linguistics, Stroudsburg (2002)

    Google Scholar 

  65. Saggion, H., Radev, D., Teufel, S., Wai, L., Strassel, S.: Developing infrastructure for the evaluation of single and multi-document summarization systems in a cross-lingual environment. In: LREC 2002, Las Palmas, pp. 747–754 (2002)

    Google Scholar 

  66. Saggion, H., Teufel, S., Radev, D., Lam, W.: Meta-evaluation of summaries in a cross-lingual environment using content-based metrics. In: Proceedings of the 19th international conference on Computational linguistics - Vol. 1, COLING ’02, Taipei, pp. 1–7. Association for Computational Linguistics, Stroudsburg (2002)

    Google Scholar 

  67. Saggion, H., Torres-Moreno, J.M., da Cunha, I., SanJuan, E., Velazquez-Morales, P.: Multilingual summarization evaluation without human models. In: In Proceedings of COLING, Beijing (2010)

    Google Scholar 

  68. Salton, G., Allan, J., Singhal, A.: Automatic text decomposition and structuring. Inf. Process. Manag. 32(2), 127–138 (1996)

    Google Scholar 

  69. Sparck Jones, K.: What might be in a summary? In: K. Knorz, Womser-Hacker (eds.) Information Retrieval 93: Von der Modellierung zur Anwendung (1993)

    Google Scholar 

  70. Sparck Jones, K.: Automatic summarizing: factors and directions. In: Mani, I., Maybury, M. (eds.) Advances in Automatic Text Summarization. MIT, Cambridge (1999)

    Google Scholar 

  71. Sparck Jones, K., Endres-Niggemeyer, B.: Automatic summarizing. Inf. Process. Manag. 31(5), 625–630 (1995)

    Google Scholar 

  72. Spärck Jones, K., Galliers, J.R.: Evaluating Natural Language Processing Systems. Springer, Berlin (1996)

    Google Scholar 

  73. Swales, J.: Genre Analysis: English in Academic and Research Settings. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  74. Teufel, S., Moens, M.: Argumentative classification of extracted sentences as a first step towards flexible abstracting. In: Mani, Maybury, M. (eds.) Advances in Automatic Text Summarization, pp. 155–171. MIT, Cambridge (1999)

    Google Scholar 

  75. Turner, J., Charniak, E.: Supervised and Unsupervised Learning for Sentence Compression. In: ACL, Michigan, Ann Arbor, USA. ACL, Stroudsburg, USA (2005)

    Google Scholar 

  76. Witbrock, M.J., Mittal, V.O.: Ultra-summarization: a statistical approach to generating highly condensed non-extractive summaries. In: In SIGIR99, Berkeley, pp. 315–316. ACM, New York (1999)

    Google Scholar 

  77. Zajic, D., Dorr, B., Lin, J., Schwartz, R.: Multi-candidate reduction: sentence compression as a tool for document summarization tasks. In: Information Processing and Management Special Issue on Summarization, p. 43. Elsevier, Amsterdam, The Netherlands (2007)

    Google Scholar 

Download references

Acknowledgements

Horacio Saggion is grateful to a fellowship from Programa Ramón y Cajal, Ministerio de Ciencia e Innovación, Spain. Thierry Poibeau is supported by the “Empirical Fundations of Linguistics” labex, Sorbonne-Paris-Cité. We acknowledge the support from the editors of this volume.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Poibeau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saggion, H., Poibeau, T. (2013). Automatic Text Summarization: Past, Present and Future. In: Poibeau, T., Saggion, H., Piskorski, J., Yangarber, R. (eds) Multi-source, Multilingual Information Extraction and Summarization. Theory and Applications of Natural Language Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28569-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28569-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28568-4

  • Online ISBN: 978-3-642-28569-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics