Abstract
We motivate, define and construct quantum proofs of knowledge, proofs of knowledge secure against quantum adversaries. Our constructions are based on a new quantum rewinding technique that allows us to extract witnesses in many classical proofs of knowledge. We give criteria under which a classical proof of knowledge is a quantum proof of knowledge. Combining our results with Watrous’ results on quantum zero-knowledge, we show that there are zero-knowledge quantum proofs of knowledge for all languages in NP (assuming quantum 1-1 one-way functions).
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Aaronson, S.: Limitations of quantum advice and one-way communication. Theory of Computing 1(1), 1–28 (2005), http://www.theoryofcomputing.org/articles/v001a001
Adcock, M., Cleve, R.: A Quantum Goldreich-Levin Theorem with Cryptographic Applications. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 323–334. Springer, Heidelberg (2002)
Bellare, M., Goldreich, O.: On Defining Proofs of Knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993), http://www-cse.ucsd.edu/users/mihir/papers/pok.ps
Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of the International Congress of Mathematicians, Berkeley, pp. 1444–1451 (1986)
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game – or – a completeness theorem for protocols with honest majority. In: STOC 1987, pp. 218–229 (1987)
Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM 38(3), 690–728 (1991), http://www.wisdom.weizmann.ac.il/~oded/X/gmw1j.pdf
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, pp. 291–304. ACM Press (1985)
Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308 (1988), http://theory.lcs.mit.edu/~rivest/GoldwasserMicaliRivest-ADigitalSignatureSchemeSecureAgainstAdaptiveChosenMessageAttacks.ps
van de Graaf, J.: Towards a formal definition of security for quantum protocols. Ph.D. thesis, Départment d’informatique et de r.o., Université de Montréal (1998), http://www.cs.mcgill.ca/~crepeau/PS/these-jeroen.ps
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC, pp. 212–219 (1996)
Halevi, S., Micali, S.: More on proofs of knowledge. IACR ePrint 1998/015 (1998)
Hallgren, S., Smith, A., Song, F.: Classical Cryptographic Protocols in a Quantum World. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 411–428. Springer, Heidelberg (2011)
Jensen, J.L.W.V.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica 30(1), 175–193 (1906) (in French)
Lunemann, C., Nielsen, J.B.: Fully Simulatable Quantum-Secure Coin-Flipping and Applications. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 21–40. Springer, Heidelberg (2011)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)
Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, FOCS 1994, pp. 124–134. IEEE Computer Society (1994)
Unruh, D.: Universally Composable Quantum Multi-party Computation. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505. Springer, Heidelberg (2010) preprint on arXiv:0910.2912 [quant-ph]
Unruh, D.: Quantum proofs of knowledge. IACR ePrint 2010/212 (2012), full version
Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1), 25–58 (2009)
Winter, A.: Coding Theorems of Quantum Information Theory, Ph.D. thesis, Universität Bielefeld (1999), arXiv:quant-ph/9907077v1
Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 International Association for Cryptologic Research
About this paper
Cite this paper
Unruh, D. (2012). Quantum Proofs of Knowledge. In: Pointcheval, D., Johansson, T. (eds) Advances in Cryptology – EUROCRYPT 2012. EUROCRYPT 2012. Lecture Notes in Computer Science, vol 7237. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29011-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-29011-4_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29010-7
Online ISBN: 978-3-642-29011-4
eBook Packages: Computer ScienceComputer Science (R0)