Abstract
Artful processes are informal processes typically carried out by those people whose work is mental rather than physical (managers, professors, researchers, engineers, etc.), the so called “knowledge workers”. MailOfMine is a tool, the aim of which is to automatically build, on top of a collection of email messages, a set of workflow models that represent the artful processes laying behind the knowledge workers activities. After an outline of the approach and the tool, this paper focuses on the mining algorithm, able to efficiently compute the set of constraints describing the artful process. Finally, an experimental evaluation of it is reported.
This work has been partly supported by Sapienza – Università di Roma through the grants FARI 2010 and TESTMED, and by the EU Commission through the FP7 project Smart Vortex. The authors would like also to thank Monica Scannapieco and Diego Zardetto for useful insights and discussions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
van der Aalst, W., Rubin, V., Verbeek, H., van Dongen, B., Kindler, E., Günther, C.: Process mining: a two-step approach to balance between underfitting and overfitting. Software and Systems Modeling 9, 87–111 (2010)
van der Aalst, W.M.P.: Verification of Workflow Nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)
van der Aalst, W.M.P.: Process mining: Discovery, conformance and enhancement of business processes. Springer (2011)
van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Rozinat, A., Verbeek, E., Weijters, T.: ProM: The process mining toolkit. In: BPM 2009 Demos. CEUR Workshop Proceedings, vol. 489 (2009)
van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service Flow Language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006)
van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)
Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow Logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Heidelberg (1998)
Agrawal, R., Srikant, R.: Mining sequential patterns. In: ICDE 1995, pp. 3–14 (1995)
Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent interaction in abductive logic programming: The SCIFF framework. ACM Trans. Comput. Log. 9(4) (2008)
de Carvalho, V.R., Cohen, W.W.: Learning to extract signature and reply lines from email. In: CEAS 2004 (2004)
Catarci, T., Dix, A., Katifori, A., Lepouras, G., Poggi, A.: Task-Centred Information Management. In: Thanos, C., Borri, F., Candela, L. (eds.) Digital Libraries: Research and Development. LNCS, vol. 4877, pp. 197–206. Springer, Heidelberg (2007)
Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting inductive logic programming techniques for declarative process mining. T. Petri Nets and Other Models of Concurrency 2, 278–295 (2009)
Chomsky, N., Miller, G.A.: Finite state languages. Information and Control 1(2), 91–112 (1958)
Di Ciccio, C., Mecella, M., Catarci, T.: Representing and Visualizing Mined Artful Processes in MailOfMine. In: Holzinger, A., Simonic, K.-M. (eds.) USAB 2011. LNCS, vol. 7058, pp. 83–94. Springer, Heidelberg (2011)
Di Ciccio, C., Mecella, M.: MINERful, a mining algorithm for declarative process constraints in MailOfMine. Tech. rep. SAPIENZA Università di Roma (2012), http://ojs.uniroma1.it/index.php/DIS_TechnicalReports/issue/view/416
Di Ciccio, C., Mecella, M., Scannapieco, M., Zardetto, D., Catarci, T.: MailOfMine – Analyzing mail messages for mining artful collaborative processes. In: SIMPDA 2011, pp. 45–59 (2011)
Garofalakis, M.N., Rastogi, R., Shim, K.: SPIRIT: Sequential pattern mining with regular expression constraints. In: VLDB 1999, pp. 223–234 (1999)
Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: PSTV 1995, pp. 3–18 (1995)
Giannakopoulou, D., Havelund, K.: Automata-based verification of temporal properties on running programs. In: ASE 2001, pp. 412–416 (2001)
Heutelbeck, D.: Preservation of Enterprise Engineering Processes by Social Collaboration Software. In: Altmann, J., Baumöl, U., Krämer, B.J. (eds.) Advances in Collective Intelligence 2011. AISC, vol. 113, pp. 115–132. Springer, Heidelberg (2012)
Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declarative process models. In: CIDM 2011, pp. 192–199 (2011)
Medeiros, A.K., Weijters, A.J., Aalst, W.M.: Genetic process mining: an experimental evaluation. Data Min. Knowl. Discov. 14(2), 245–304 (2007)
Myers, E.W.: An O(ND) difference algorithm and its variations. Algorithmica 1(2), 251–266 (1986)
Pesic, M., van der Aalst, W.M.P.: A Declarative Approach for Flexible Business Processes Management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)
Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: Full support for loosely-structured processes. In: EDOC 2007, pp. 287–300 (2007)
Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint-Based Workflow Models: Change Made Easy. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803, pp. 77–94. Springer, Heidelberg (2007)
Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3, 114–125 (1959)
Smart Vortex Consortium: Smart Vortex – Management and analysis of massive data streams to support large-scale collaborative engineering projects. FP7 IP Project, http://www.smartvortex.eu/
Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalizations and Performance Improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 3–17. Springer, Heidelberg (1996)
Warren, P., Kings, N., Thurlow, I., Davies, J., Buerger, T., Simperl, E., Ruiz, C., Gomez-Perez, J.M., Ermolayev, V., Ghani, R., Tilly, M., Bösser, T., Imtiaz, A.: Improving knowledge worker productivity - the Active integrated approach. BT Technology Journal 26(2), 165–176 (2009)
Weijters, A., van der Aalst, W.: Rediscovering workflow models from event-based data using little thumb. Integrated Computer-Aided Engineering 10 (2001, 2003)
Wen, L., van der Aalst, W.M.P., Wang, J., Sun, J.: Mining process models with non-free-choice constructs. Data Min. Knowl. Discov. 15(2), 145–180 (2007)
Westergaard, M.: Better Algorithms for Analyzing and Enacting Declarative Workflow Languages Using LTL. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 83–98. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Di Ciccio, C., Mecella, M. (2012). Mining Constraints for Artful Processes. In: Abramowicz, W., Kriksciuniene, D., Sakalauskas, V. (eds) Business Information Systems. BIS 2012. Lecture Notes in Business Information Processing, vol 117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30359-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-30359-3_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30358-6
Online ISBN: 978-3-642-30359-3
eBook Packages: Computer ScienceComputer Science (R0)