Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Mining Constraints for Artful Processes

  • Conference paper
Business Information Systems (BIS 2012)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 117))

Included in the following conference series:

Abstract

Artful processes are informal processes typically carried out by those people whose work is mental rather than physical (managers, professors, researchers, engineers, etc.), the so called “knowledge workers”. MailOfMine is a tool, the aim of which is to automatically build, on top of a collection of email messages, a set of workflow models that represent the artful processes laying behind the knowledge workers activities. After an outline of the approach and the tool, this paper focuses on the mining algorithm, able to efficiently compute the set of constraints describing the artful process. Finally, an experimental evaluation of it is reported.

This work has been partly supported by Sapienza – Università di Roma through the grants FARI 2010 and TESTMED, and by the EU Commission through the FP7 project Smart Vortex. The authors would like also to thank Monica Scannapieco and Diego Zardetto for useful insights and discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. van der Aalst, W., Rubin, V., Verbeek, H., van Dongen, B., Kindler, E., Günther, C.: Process mining: a two-step approach to balance between underfitting and overfitting. Software and Systems Modeling 9, 87–111 (2010)

    Article  Google Scholar 

  2. van der Aalst, W.M.P.: Verification of Workflow Nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  3. van der Aalst, W.M.P.: Process mining: Discovery, conformance and enhancement of business processes. Springer (2011)

    Google Scholar 

  4. van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Rozinat, A., Verbeek, E., Weijters, T.: ProM: The process mining toolkit. In: BPM 2009 Demos. CEUR Workshop Proceedings, vol. 489 (2009)

    Google Scholar 

  5. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service Flow Language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

    Article  Google Scholar 

  7. Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow Logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Heidelberg (1998)

    Google Scholar 

  8. Agrawal, R., Srikant, R.: Mining sequential patterns. In: ICDE 1995, pp. 3–14 (1995)

    Google Scholar 

  9. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent interaction in abductive logic programming: The SCIFF framework. ACM Trans. Comput. Log. 9(4) (2008)

    Google Scholar 

  10. de Carvalho, V.R., Cohen, W.W.: Learning to extract signature and reply lines from email. In: CEAS 2004 (2004)

    Google Scholar 

  11. Catarci, T., Dix, A., Katifori, A., Lepouras, G., Poggi, A.: Task-Centred Information Management. In: Thanos, C., Borri, F., Candela, L. (eds.) Digital Libraries: Research and Development. LNCS, vol. 4877, pp. 197–206. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting inductive logic programming techniques for declarative process mining. T. Petri Nets and Other Models of Concurrency 2, 278–295 (2009)

    Article  Google Scholar 

  13. Chomsky, N., Miller, G.A.: Finite state languages. Information and Control 1(2), 91–112 (1958)

    Article  Google Scholar 

  14. Di Ciccio, C., Mecella, M., Catarci, T.: Representing and Visualizing Mined Artful Processes in MailOfMine. In: Holzinger, A., Simonic, K.-M. (eds.) USAB 2011. LNCS, vol. 7058, pp. 83–94. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Di Ciccio, C., Mecella, M.: MINERful, a mining algorithm for declarative process constraints in MailOfMine. Tech. rep. SAPIENZA Università di Roma (2012), http://ojs.uniroma1.it/index.php/DIS_TechnicalReports/issue/view/416

  16. Di Ciccio, C., Mecella, M., Scannapieco, M., Zardetto, D., Catarci, T.: MailOfMine – Analyzing mail messages for mining artful collaborative processes. In: SIMPDA 2011, pp. 45–59 (2011)

    Google Scholar 

  17. Garofalakis, M.N., Rastogi, R., Shim, K.: SPIRIT: Sequential pattern mining with regular expression constraints. In: VLDB 1999, pp. 223–234 (1999)

    Google Scholar 

  18. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: PSTV 1995, pp. 3–18 (1995)

    Google Scholar 

  19. Giannakopoulou, D., Havelund, K.: Automata-based verification of temporal properties on running programs. In: ASE 2001, pp. 412–416 (2001)

    Google Scholar 

  20. Heutelbeck, D.: Preservation of Enterprise Engineering Processes by Social Collaboration Software. In: Altmann, J., Baumöl, U., Krämer, B.J. (eds.) Advances in Collective Intelligence 2011. AISC, vol. 113, pp. 115–132. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declarative process models. In: CIDM 2011, pp. 192–199 (2011)

    Google Scholar 

  22. Medeiros, A.K., Weijters, A.J., Aalst, W.M.: Genetic process mining: an experimental evaluation. Data Min. Knowl. Discov. 14(2), 245–304 (2007)

    Article  Google Scholar 

  23. Myers, E.W.: An O(ND) difference algorithm and its variations. Algorithmica 1(2), 251–266 (1986)

    Article  Google Scholar 

  24. Pesic, M., van der Aalst, W.M.P.: A Declarative Approach for Flexible Business Processes Management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: Full support for loosely-structured processes. In: EDOC 2007, pp. 287–300 (2007)

    Google Scholar 

  26. Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint-Based Workflow Models: Change Made Easy. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803, pp. 77–94. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  27. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3, 114–125 (1959)

    Article  Google Scholar 

  28. Smart Vortex Consortium: Smart Vortex – Management and analysis of massive data streams to support large-scale collaborative engineering projects. FP7 IP Project, http://www.smartvortex.eu/

  29. Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalizations and Performance Improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 3–17. Springer, Heidelberg (1996)

    Google Scholar 

  30. Warren, P., Kings, N., Thurlow, I., Davies, J., Buerger, T., Simperl, E., Ruiz, C., Gomez-Perez, J.M., Ermolayev, V., Ghani, R., Tilly, M., Bösser, T., Imtiaz, A.: Improving knowledge worker productivity - the Active integrated approach. BT Technology Journal 26(2), 165–176 (2009)

    Google Scholar 

  31. Weijters, A., van der Aalst, W.: Rediscovering workflow models from event-based data using little thumb. Integrated Computer-Aided Engineering 10 (2001, 2003)

    Google Scholar 

  32. Wen, L., van der Aalst, W.M.P., Wang, J., Sun, J.: Mining process models with non-free-choice constructs. Data Min. Knowl. Discov. 15(2), 145–180 (2007)

    Article  Google Scholar 

  33. Westergaard, M.: Better Algorithms for Analyzing and Enacting Declarative Workflow Languages Using LTL. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 83–98. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Di Ciccio, C., Mecella, M. (2012). Mining Constraints for Artful Processes. In: Abramowicz, W., Kriksciuniene, D., Sakalauskas, V. (eds) Business Information Systems. BIS 2012. Lecture Notes in Business Information Processing, vol 117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30359-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30359-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30358-6

  • Online ISBN: 978-3-642-30359-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics