Abstract
Hedge cue detection is a Natural Language Processing (NLP) task that consists of determining whether sentences contain hedges. These linguistic devices indicate that authors do not or cannot back up their opinions or statements with facts. This binary classification problem, i.e. distinguishing factual versus uncertain sentences, only recently received attention in the NLP community. We use kLog, a new logical and relational language for kernel-based learning, to tackle this problem. We present results on the CoNLL 2010 benchmark dataset that consists of a set of paragraphs from Wikipedia, one of the domains in which uncertainty detection has become important. Our approach shows competitive results compared to state-of-the-art systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lakoff, G.: Hedges: A study in meaning criteria and the logic of fuzzy concepts. Journal of Philosophical Logic 2 (1973)
Hyland, K.: Hedging in scientific research articles, Amsterdam (1998)
Riloff, E., Wiebe, J., Wilson, T.: Learning subjective nouns using extraction pattern bootstrapping. In: Proc. of CoNLL 2003, Edmonton (2003)
Medlock, B., Briscoe, T.: Weakly supervised learning for hedge classification in scientific literature. In: Proc. of ACL 2007, Prague (2007)
Szarvas, G.: Hedge classification in biomedical texts with a weakly supervised selection of keywords. In: Proc. of ACL 2008, Ohio (2008)
Light, M., Qiu, X., Srinivasan, P.: The language of bioscience: facts, speculations, and statements in between. In: Proc. of HLT-NAACL 2004 – BioLINK (2004)
Medlock, B.: Exploring hedge identification in biomedical literature. Journal of Biomedical Informatics 41 (2008)
Frasconi, P., Costa F., De Raedt L., De Grave K.: kLog - a language for logical and relational learning with kernels, Technical Report (2011), http://www.dsi.unifi.it/~paolo/ps/klog.pdf
Kim, J., Ohta, T., Pyysalo, S., Kano, Y., Tsujii, J.: Overview of BioNLP’09 shared task on event extraction. In: Proc. of the Workshop on Current Trends in Biomedical NLP – Shared Task, Colorado (2009)
Farkas, R., Vincze, V., Móra, G., Csirik, J., Szarvas, G.: The CoNLL-2010 shared task: learning to detect hedges and their scope in natural language text. In: Proc. of CoNLL 2010 – Shared Task, Uppsala (2010)
Chang, C.-C., Lin C.-J.: LIBSVM: a library for support vector machines (2001)
Morante, R., Van Asch, V., Daelemans, W.: Memory-based resolution of in-sentence scopes of hedge cues. In: Proc. of CoNLL 2010 – Shared Task, Uppsala (2010)
Daelemans, W., van den Bosch, A.: Memory-based language processing. Cambridge University Press, Cambridge (2005)
Kilicoglu, H., Bergler, S.: Recognizing speculative language in biomedical research articles: a linguistically motivated perspective. BMC Bioinformatics (2008)
Ganter, V., Strube, M.: Finding hedges by chasing weasels: Hedge detection using Wikipedia tags and shallow linguistic features. In: Proc. of ACL-IJCNLP 2009 Conference Short Papers, Suntec (2009)
Nivre, J.: Inductive Dependency Parsing. In: Text, Speech and Language Technology. Springer (2006)
Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete Book. Prentice Hall Press (2008)
Vincze, V., Szarvas, G., Farkas, R., Móra, G., Csirik, J.: The BioScope corpus: biomedical texts annotated for uncertainty, negation and their scopes. BMC Bioinformatics (2008)
Velldal, E.: Detecting Uncertainty in Biomedical Literature: A Simple Disambiguation Approach Using Sparse Random Indexing. In: Proc. of the Fourth International Symposium on Semantic Mining in Biomedicine (SMBM), Cambridgeshire (2010)
Costa, F., De Grave, K.: Fast neighborhood subgraph pairwise distance kernel. In: Proc. of the 26th International Conference on Machine Learning, Haifa (2010)
Buchholz, S., Marsi, E.: CoNLL-X shared task on multilingual dependency parsing. In: Proc. of the Tenth Conference on Computational Natural Language Learning (CoNLL-X 2006), New York (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Verbeke, M., Frasconi, P., Van Asch, V., Morante, R., Daelemans, W., De Raedt, L. (2012). Kernel-Based Logical and Relational Learning with kLog for Hedge Cue Detection. In: Muggleton, S.H., Tamaddoni-Nezhad, A., Lisi, F.A. (eds) Inductive Logic Programming. ILP 2011. Lecture Notes in Computer Science(), vol 7207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31951-8_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-31951-8_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31950-1
Online ISBN: 978-3-642-31951-8
eBook Packages: Computer ScienceComputer Science (R0)