Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Kernel-Based Logical and Relational Learning with kLog for Hedge Cue Detection

  • Conference paper
Inductive Logic Programming (ILP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7207))

Included in the following conference series:

Abstract

Hedge cue detection is a Natural Language Processing (NLP) task that consists of determining whether sentences contain hedges. These linguistic devices indicate that authors do not or cannot back up their opinions or statements with facts. This binary classification problem, i.e. distinguishing factual versus uncertain sentences, only recently received attention in the NLP community. We use kLog, a new logical and relational language for kernel-based learning, to tackle this problem. We present results on the CoNLL 2010 benchmark dataset that consists of a set of paragraphs from Wikipedia, one of the domains in which uncertainty detection has become important. Our approach shows competitive results compared to state-of-the-art systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lakoff, G.: Hedges: A study in meaning criteria and the logic of fuzzy concepts. Journal of Philosophical Logic 2 (1973)

    Google Scholar 

  2. Hyland, K.: Hedging in scientific research articles, Amsterdam (1998)

    Google Scholar 

  3. Riloff, E., Wiebe, J., Wilson, T.: Learning subjective nouns using extraction pattern bootstrapping. In: Proc. of CoNLL 2003, Edmonton (2003)

    Google Scholar 

  4. Medlock, B., Briscoe, T.: Weakly supervised learning for hedge classification in scientific literature. In: Proc. of ACL 2007, Prague (2007)

    Google Scholar 

  5. Szarvas, G.: Hedge classification in biomedical texts with a weakly supervised selection of keywords. In: Proc. of ACL 2008, Ohio (2008)

    Google Scholar 

  6. Light, M., Qiu, X., Srinivasan, P.: The language of bioscience: facts, speculations, and statements in between. In: Proc. of HLT-NAACL 2004 – BioLINK (2004)

    Google Scholar 

  7. Medlock, B.: Exploring hedge identification in biomedical literature. Journal of Biomedical Informatics 41 (2008)

    Google Scholar 

  8. Frasconi, P., Costa F., De Raedt L., De Grave K.: kLog - a language for logical and relational learning with kernels, Technical Report (2011), http://www.dsi.unifi.it/~paolo/ps/klog.pdf

  9. Kim, J., Ohta, T., Pyysalo, S., Kano, Y., Tsujii, J.: Overview of BioNLP’09 shared task on event extraction. In: Proc. of the Workshop on Current Trends in Biomedical NLP – Shared Task, Colorado (2009)

    Google Scholar 

  10. Farkas, R., Vincze, V., Móra, G., Csirik, J., Szarvas, G.: The CoNLL-2010 shared task: learning to detect hedges and their scope in natural language text. In: Proc. of CoNLL 2010 – Shared Task, Uppsala (2010)

    Google Scholar 

  11. Chang, C.-C., Lin C.-J.: LIBSVM: a library for support vector machines (2001)

    Google Scholar 

  12. Morante, R., Van Asch, V., Daelemans, W.: Memory-based resolution of in-sentence scopes of hedge cues. In: Proc. of CoNLL 2010 – Shared Task, Uppsala (2010)

    Google Scholar 

  13. Daelemans, W., van den Bosch, A.: Memory-based language processing. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  14. Kilicoglu, H., Bergler, S.: Recognizing speculative language in biomedical research articles: a linguistically motivated perspective. BMC Bioinformatics (2008)

    Google Scholar 

  15. Ganter, V., Strube, M.: Finding hedges by chasing weasels: Hedge detection using Wikipedia tags and shallow linguistic features. In: Proc. of ACL-IJCNLP 2009 Conference Short Papers, Suntec (2009)

    Google Scholar 

  16. Nivre, J.: Inductive Dependency Parsing. In: Text, Speech and Language Technology. Springer (2006)

    Google Scholar 

  17. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete Book. Prentice Hall Press (2008)

    Google Scholar 

  18. Vincze, V., Szarvas, G., Farkas, R., Móra, G., Csirik, J.: The BioScope corpus: biomedical texts annotated for uncertainty, negation and their scopes. BMC Bioinformatics (2008)

    Google Scholar 

  19. Velldal, E.: Detecting Uncertainty in Biomedical Literature: A Simple Disambiguation Approach Using Sparse Random Indexing. In: Proc. of the Fourth International Symposium on Semantic Mining in Biomedicine (SMBM), Cambridgeshire (2010)

    Google Scholar 

  20. Costa, F., De Grave, K.: Fast neighborhood subgraph pairwise distance kernel. In: Proc. of the 26th International Conference on Machine Learning, Haifa (2010)

    Google Scholar 

  21. Buchholz, S., Marsi, E.: CoNLL-X shared task on multilingual dependency parsing. In: Proc. of the Tenth Conference on Computational Natural Language Learning (CoNLL-X 2006), New York (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Verbeke, M., Frasconi, P., Van Asch, V., Morante, R., Daelemans, W., De Raedt, L. (2012). Kernel-Based Logical and Relational Learning with kLog for Hedge Cue Detection. In: Muggleton, S.H., Tamaddoni-Nezhad, A., Lisi, F.A. (eds) Inductive Logic Programming. ILP 2011. Lecture Notes in Computer Science(), vol 7207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31951-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31951-8_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31950-1

  • Online ISBN: 978-3-642-31951-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics