Abstract
Flower pollination is an intriguing process in the natural world. Its evolutionary characteristics can be used to design new optimization algorithms. In this paper, we propose a new algorithm, namely, flower pollination algorithm, inspired by the pollination process of flowers. We first use ten test functions to validate the new algorithm, and compare its performance with genetic algorithms and particle swarm optimization. Our simulation results show the flower algorithm is more efficient than both GA and PSO. We also use the flower algorithm to solve a nonlinear design benchmark, which shows the convergence rate is almost exponential.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ackley, D.H.: A Connectionist Machine for Genetic Hillclimbing. Kluwer Academic Publishers (1987)
Cagnina, L.C., Esquivel, S.C., Coello, C.A.: Solving engineering optimization problems with the simple constrained particle swarm optimizer. Informatica 32, 319–326 (2008)
Chittka, L., Thomson, J.D., Waser, N.M.: Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86, 361–377 (1999)
Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gumus, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Scheiger, C.A.: Handbook of Test Problems in Local and Global Optimization. Springer (1999)
Hedar, A.: Test function web pages, http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm
Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Engineering with Computers 27, article (2011), doi:10.1007/s00366-011-0241-y
Glover, B.J.: Understanding Flowers and Flowering: An Integrated Approach. Oxford University Press (2007)
Goldberg, D.E.: Genetic Algorithms in Search, Optimisation and Machine Learning. Addison Wesley, Reading (1989)
Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Anbor (1975)
Kazemian, M., Ramezani, Y., Lucas, C., Moshiri, B.: Swarm Clustering Based on Flowers Pollination by Artificial Bees. In: Abraham, A., Grosan, C., Ramos, V. (eds.) Swarm Intelligence in Data Mining. SCI, vol. 34, pp. 191–202. Springer, Heidelberg (2006)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)
Kennedy, J., Eberhart, R., Shi, Y.: Swarm intelligence. Academic Press (2001)
Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing. J. Computational Physics 226, 1830–1844 (2007)
Wikipedia article on pollination, http://en.wikipedia.org/wiki/Pollination
Reynolds, A.M., Frye, M.A.: Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search. PLoS One 2, e354 (2007)
Walker, M.: How flowers conquered the world. BBC Earth News (July 10, 2009), http://news.bbc.co.uk/earth/hi/earth_news/newsid_8143000/8143095.stm
Waser, N.M.: Flower constancy: definition, cause and measurement. The American Naturalist 127(5), 596–603 (1986)
Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)
Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Computation 2(2), 78–84 (2010)
Yang, X.S.: Engineering Optimization: An Introduction with Metaheuristic Applications. Wiley (2010)
Yang, X.-S.: A New Metaheuristic Bat-Inspired Algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 65–74. Springer, Heidelberg (2010)
Oily Fossils provide clues to the evolution of flowers. Science Daily (April 5, 2001), http://www.sciencedaily.com/releases/2001/04/010403071438.htm
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yang, XS. (2012). Flower Pollination Algorithm for Global Optimization. In: Durand-Lose, J., Jonoska, N. (eds) Unconventional Computation and Natural Computation. UCNC 2012. Lecture Notes in Computer Science, vol 7445. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32894-7_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-32894-7_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32893-0
Online ISBN: 978-3-642-32894-7
eBook Packages: Computer ScienceComputer Science (R0)