Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Extending Partial Representations of Function Graphs and Permutation Graphs

  • Conference paper
Algorithms – ESA 2012 (ESA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7501))

Included in the following conference series:

Abstract

Function graphs are graphs representable by intersections of continuous real-valued functions on the interval [0,1] and are known to be exactly the complements of comparability graphs. As such they are recognizable in polynomial time. Function graphs generalize permutation graphs, which arise when all functions considered are linear.

We focus on the problem of extending partial representations, which generalizes the recognition problem. We observe that for permutation graphs an easy extension of Golumbic’s comparability graph recognition algorithm can be exploited. This approach fails for function graphs. Nevertheless, we present a polynomial-time algorithm for extending a partial representation of a graph by functions defined on the entire interval [0,1] provided for some of the vertices. On the other hand, we show that if a partial representation consists of functions defined on subintervals of [0,1], then the problem of extending this representation to functions on the entire interval [0,1] becomes NP-complete.

Supported by ESF EuroGIGA project GraDR, the first two authors by Czech Science Foundation as grant No. GIG/11/E023, the last two authors by Ministry of Science and Higher Education of Poland as grant No. 884/N-ESF-EuroGIGA/10/2011/0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angelini, P., Di Battista, G., Frati, F., Jelínek, V., Kratochvíl, J., Patrignani, M., Rutter, I.: Testing planarity of partially embedded graphs. In: SODA 2010, pp. 202–221 (2010)

    Google Scholar 

  2. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inform. Process. Lett. 8, 121–123 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and planarity using PQ-tree algorithms. J. Comput. Sys. Sci. 13, 335–379 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding problems (2011), http://arxiv.org/abs/1112.0245

  5. Even, S., Pnueli, A., Lempel, A.: Permutation graphs and transitive graphs. J. ACM 19, 400–410 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fiala, J.: NP-completeness of the edge precoloring extension problem on bipartite graphs. J. Graph Theory 43, 156–160 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gallai, T.: Transitiv orientierbare Graphen. Acta Mathematica Academiae Scientiarum Hungaricae 18, 25–66 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  8. Golumbic, M.C.: The complexity of comparability graph recognition and coloring. Computing 18, 199–208 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press (1980)

    Google Scholar 

  10. Golumbic, M.C., Rotem, D., Urrutia, J.: Comparability graphs and intersection graphs. Discrete Math. 43, 37–46 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jampani, K.R., Lubiw, A.: Simultaneous Interval Graphs. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 206–217. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Jampani, K.R., Lubiw, A.: The simultaneous representation problem for chordal, comparability and permutation graphs. Graph Algorithms Appl. 16, 283–315 (2012)

    Article  Google Scholar 

  13. Klavík, P., Kratochvíl, J., Vyskočil, T.: Extending Partial Representations of Interval Graphs. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 276–285. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Kratochvíl, J.: String graphs. II. recognizing string graphs is NP-hard. J. Combin. Theory Ser. B 52, 67–78 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Krom, M.R.: The decision problem for a class of first-order formulas in which all disjunctions are binary. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 13, 15–20 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuratowski, K.: Sur le problème des courbes gauches en topologie. Fund. Math. 15, 217–283 (1930)

    Google Scholar 

  17. Marx, D.: NP-completeness of list coloring and precoloring extension on the edges of planar graphs. J. Graph Theory 49, 313–324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation. Discrete Math. 201, 189–241 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Patrignani, M.: On Extending a Partial Straight-Line Drawing. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 380–385. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing string graphs in NP. In: STOC 2002, pp. 1–6 (2002)

    Google Scholar 

  21. Spinrad, J.P.: Efficient Graph Representations. Field Institute Monographs (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klavík, P., Kratochvíl, J., Krawczyk, T., Walczak, B. (2012). Extending Partial Representations of Function Graphs and Permutation Graphs. In: Epstein, L., Ferragina, P. (eds) Algorithms – ESA 2012. ESA 2012. Lecture Notes in Computer Science, vol 7501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33090-2_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33090-2_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33089-6

  • Online ISBN: 978-3-642-33090-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics