Abstract
Function graphs are graphs representable by intersections of continuous real-valued functions on the interval [0,1] and are known to be exactly the complements of comparability graphs. As such they are recognizable in polynomial time. Function graphs generalize permutation graphs, which arise when all functions considered are linear.
We focus on the problem of extending partial representations, which generalizes the recognition problem. We observe that for permutation graphs an easy extension of Golumbic’s comparability graph recognition algorithm can be exploited. This approach fails for function graphs. Nevertheless, we present a polynomial-time algorithm for extending a partial representation of a graph by functions defined on the entire interval [0,1] provided for some of the vertices. On the other hand, we show that if a partial representation consists of functions defined on subintervals of [0,1], then the problem of extending this representation to functions on the entire interval [0,1] becomes NP-complete.
Supported by ESF EuroGIGA project GraDR, the first two authors by Czech Science Foundation as grant No. GIG/11/E023, the last two authors by Ministry of Science and Higher Education of Poland as grant No. 884/N-ESF-EuroGIGA/10/2011/0.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angelini, P., Di Battista, G., Frati, F., Jelínek, V., Kratochvíl, J., Patrignani, M., Rutter, I.: Testing planarity of partially embedded graphs. In: SODA 2010, pp. 202–221 (2010)
Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inform. Process. Lett. 8, 121–123 (1979)
Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and planarity using PQ-tree algorithms. J. Comput. Sys. Sci. 13, 335–379 (1976)
Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding problems (2011), http://arxiv.org/abs/1112.0245
Even, S., Pnueli, A., Lempel, A.: Permutation graphs and transitive graphs. J. ACM 19, 400–410 (1972)
Fiala, J.: NP-completeness of the edge precoloring extension problem on bipartite graphs. J. Graph Theory 43, 156–160 (2003)
Gallai, T.: Transitiv orientierbare Graphen. Acta Mathematica Academiae Scientiarum Hungaricae 18, 25–66 (1967)
Golumbic, M.C.: The complexity of comparability graph recognition and coloring. Computing 18, 199–208 (1977)
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press (1980)
Golumbic, M.C., Rotem, D., Urrutia, J.: Comparability graphs and intersection graphs. Discrete Math. 43, 37–46 (1983)
Jampani, K.R., Lubiw, A.: Simultaneous Interval Graphs. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 206–217. Springer, Heidelberg (2010)
Jampani, K.R., Lubiw, A.: The simultaneous representation problem for chordal, comparability and permutation graphs. Graph Algorithms Appl. 16, 283–315 (2012)
Klavík, P., Kratochvíl, J., Vyskočil, T.: Extending Partial Representations of Interval Graphs. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 276–285. Springer, Heidelberg (2011)
Kratochvíl, J.: String graphs. II. recognizing string graphs is NP-hard. J. Combin. Theory Ser. B 52, 67–78 (1991)
Krom, M.R.: The decision problem for a class of first-order formulas in which all disjunctions are binary. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 13, 15–20 (1967)
Kuratowski, K.: Sur le problème des courbes gauches en topologie. Fund. Math. 15, 217–283 (1930)
Marx, D.: NP-completeness of list coloring and precoloring extension on the edges of planar graphs. J. Graph Theory 49, 313–324 (2005)
McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation. Discrete Math. 201, 189–241 (1999)
Patrignani, M.: On Extending a Partial Straight-Line Drawing. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 380–385. Springer, Heidelberg (2006)
Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing string graphs in NP. In: STOC 2002, pp. 1–6 (2002)
Spinrad, J.P.: Efficient Graph Representations. Field Institute Monographs (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Klavík, P., Kratochvíl, J., Krawczyk, T., Walczak, B. (2012). Extending Partial Representations of Function Graphs and Permutation Graphs. In: Epstein, L., Ferragina, P. (eds) Algorithms – ESA 2012. ESA 2012. Lecture Notes in Computer Science, vol 7501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33090-2_58
Download citation
DOI: https://doi.org/10.1007/978-3-642-33090-2_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33089-6
Online ISBN: 978-3-642-33090-2
eBook Packages: Computer ScienceComputer Science (R0)