Abstract
We propose a method for deformable registration based on learning the manifolds of individual brain regions. Recent publications on registration of medical images advocate the use of manifold learning in order to confine the search space to anatomically plausible deformations. Existing methods construct manifolds based on a single metric over the entire image domain thus frequently miss regional brain variations. We address this issue by first learning manifolds for specific regions and then computing region-specific deformations from these manifolds. We then determine deformations for the entire image domain by learning the global manifold in such a way that it preserves the region-specific deformations. We evaluate the accuracy of our method by applying it to the LPBA40 dataset and measuring the overlap of the deformed segmentations. The result shows significant improvement in registration accuracy on cortex regions compared to other state of the art methods.
Chapter PDF
Similar content being viewed by others
References
Ashburner, J., Friston, K.J.: Voxel-based morphometry–the methods. Neuroimage 11(6 Pt 1), 805–821 (2000)
Choi, Y., Lee, S.: Injectivity conditions of 2D and 3D uniform cubic B-spline functions. Graphical Models 62(6), 411–427 (2000)
Gerber, S., Tasdizen, T., Fletcher, P.T., Joshi, S.C., Whitaker, R.T.: Manifold modeling for brain population analysis. Med. Imag. Anal. 14(5), 643–653 (2010)
Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. Med. Imag. Anal. 12(6), 731–741 (2008)
Hamm, J., Ye, D.H., Verma, R., Davatzikos, C.: GRAM: A framework for geodesic registration on anatomical manifolds. Med. Imag. Anal. 14(5), 633–642 (2010)
Heckemann, R.A., Hajnal, J.V., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage 33(1), 115–126 (2006)
Jia, H., Wu, G., Wang, Q., Shen, D.: Absorb: Atlas building by self-organized registration and bundling. Neuroimage 51(3), 1057–1070 (2010)
Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. Tech. Rep. MSR-TR-2004-90, Microsoft Research (MSR) (September 2004)
Shattuck, D.W., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr, K.L., Poldrack, R.A., Bilder, R.M., Toga, A.W.: Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage 39(3), 1064–1080 (2008)
Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Symmetric Log-Domain Diffeomorphic Registration: A Demons-Based Approach. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 754–761. Springer, Heidelberg (2008)
Wolz, R., Aljabar, P., Hajnal, J.V., Hammers, A., Rueckert, D.: ADNI: Leap: learning embeddings for atlas propagation. Neuroimage 49(2), 1316–1325 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ye, D.H., Hamm, J., Kwon, D., Davatzikos, C., Pohl, K.M. (2012). Regional Manifold Learning for Deformable Registration of Brain MR Images. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012. MICCAI 2012. Lecture Notes in Computer Science, vol 7512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33454-2_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-33454-2_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33453-5
Online ISBN: 978-3-642-33454-2
eBook Packages: Computer ScienceComputer Science (R0)