Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Food Recommendation Using Ontology and Heuristics

  • Conference paper
Advanced Machine Learning Technologies and Applications (AMLTA 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 322))

  • 3490 Accesses

Abstract

Recommender systems are needed to find food items of one’s interest. This paper reviews recommender systems and recommendation methods, then propose a food personalization framework based on adaptive hypermedia and extend Hermes framework with food recommendation functionality. Moreover, it combines TF-IDF term extraction method with cosine similarity measure. Healthy heuristics and standard food database are incorporated into the knowledgebase. Based on the performed evaluation, we conclude that semantic recommender systems in general outperform traditional recommenders systems with respect to accuracy, precision, and recall, and that the proposed recommender has a better F-measure than existing semantic recommenders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mika, S.: Challenges for Nutrition Recommender Systems. In: Proceedings of the 2nd Workshop on Context Aware Intel. Assistance, Berlin, Germany, pp. 25–33 (October 2011)

    Google Scholar 

  2. Keogh, R.H., White, I.R.: Allowing for never and episodic consumers when correcting for error in food record measurements of dietary intake. Biostatistics (March 2011)

    Google Scholar 

  3. van Pinxteren, Y., Geleijnse, G., Kamsteeg, P.: Deriving a recipe similarity measure for recommending healthful meals. In: Proc. of the 16th International Conference on Intelligent User Interfaces, IUI 2011, pp. 105–114. ACM, New York (2011)

    Chapter  Google Scholar 

  4. Becker, M.H., Maiman, L.A.: Strategies for enhancing patient compliance. Journal of Community Health 6(2), 113–135 (1980)

    Article  Google Scholar 

  5. Wansink, B.: Mindless Eating—Why We Eat More Than We Think. Bantam-Dell, New York (2006)

    Google Scholar 

  6. Hammond, K.: Chef: A model of case-based planning. In: Proceedings of the National Conference on AI (1986)

    Google Scholar 

  7. Hinrichs, T.: Strategies for adaptation and recovery in a design problem solver. In: Proceedings of the Workshop on Case-Based Reasoning (1989)

    Google Scholar 

  8. Freyne, J., Berkovsky, S.: Intelligent food planning: personalized recipe recommendation. In: Proceedings of the 15th International Conference on Intelligent User Interfaces, IUI 2010, pp. 321–324. ACM, New York (2010)

    Chapter  Google Scholar 

  9. Aberg, J.: Dealing with malnutrition: A meal planning system for elderly. In: AAAI, Spring Symposium on Argumentation for Consumers of Health Care (2006)

    Google Scholar 

  10. Mankoff, J., Hsieh, G., Hung, H.C., Nitao, E.: Using Low-Cost Sensing to Support Nutritional Awareness. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, pp. 371–378. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Chi, P., Chen, J., Chu, H., Lo, J.: Enabling calorie-aware cooking in a smart kitchen. In: Proc. of the 3rd International Conference on Persuasive Technology, June 04-06 (2008)

    Google Scholar 

  12. Kitamura, K., de Silva, C., Yamasaki, T., Aizawa, K.: Image processing based approach to food balance analysis for personal food logging. In: 2010 IEEE International Conference on Multimedia and Expo (ICME), pp. 625–630 (July 2010)

    Google Scholar 

  13. Karg, G., Bognar, A., Ohmayer, G.: Nutrient content of composite food: a survey of methods. In: Proceedings of European Seminar of EOQC Food Section, Budapest, pp. 148–179 (1986)

    Google Scholar 

  14. Powers, P.M., Hoover, L.W.: Calculating the nutrient composition of recipes with computers. J. Am. Diet. Assoc. 89, 224–232 (1989)

    Google Scholar 

  15. Freyne, J., Berkovsky, S.: Intelligent food planning: personalized recipe recommendation. In: Proceedings of the 15th International Conference on Intelligent User Interfaces, IUI 2010, pp. 321–324. ACM, New York (2010)

    Chapter  Google Scholar 

  16. Adomavicius, G., Tuzhilin, A.: Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)

    Article  Google Scholar 

  17. Salton, G., Buckley, C.: Term-Weighting Approaches in Automatic Text Retrieval. Information Processing and Management 24(5), 513–523 (1988)

    Article  Google Scholar 

  18. IJntema, W., Goossen, F., Frasincar, F., Hogenboom, F.: Ontology-Based News Recommendation. In: EDBT/ICDT International Workshop on Business Intelligence and the Web (BEWEB 2010). ACM (2010)

    Google Scholar 

  19. Jaccard, P.: Étude Comparative de la Distribution Florale dans une Portion des Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)

    Google Scholar 

  20. Getahun, F., Tekli, J., Chbeir, R., Viviani, M., Yetongnon, K.: Relating RSS News/Items. In: Gaedke, M., Grossniklaus, M., Díaz, O. (eds.) ICWE 2009. LNCS, vol. 5648, pp. 442–452. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Bra, P.D., Aerts, A.T.M., Houben, G.J., Wu, H.: Making General-Purpose Adaptive Hypermedia Work. In: World Conference on the WWW and Internet (WebNet 2000), pp. 117–123 (2000)

    Google Scholar 

  22. Borsje, J., Levering, L., Frasincar, F.: Hermes: a Semantic Web-Based News Decision Support System. In: 23rd Annual ACM Symposium on Applied Computing, SAC 2008, pp. 2415–2420 (2008)

    Google Scholar 

  23. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., et al.: OWL Web Ontology Language Reference W3C Recommendation, February 10 (2004)

    Google Scholar 

  24. http://ndb.nal.usda.gov/ndb/foods/list (accessed July 24, 2012)

  25. Buckley, C., Allan, J., Salton, G.: Automatic Routing and Retrieval Using Smart: TREC-2. Information Porcessing and Management 31(3), 315–326 (1995)

    Article  Google Scholar 

  26. Singhal, A., Buckley, C., Mitra, M.: Pivoted Document Length Normalization. In: 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 1996), pp. 21–29. ACM (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

El-Dosuky, M.A., Rashad, M.Z., Hamza, T.T., EL-Bassiouny, A.H. (2012). Food Recommendation Using Ontology and Heuristics. In: Hassanien, A.E., Salem, AB.M., Ramadan, R., Kim, Th. (eds) Advanced Machine Learning Technologies and Applications. AMLTA 2012. Communications in Computer and Information Science, vol 322. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35326-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35326-0_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35325-3

  • Online ISBN: 978-3-642-35326-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics