Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Description and Classification of Confocal Endomicroscopic Images for the Automatic Diagnosis of Inflammatory Bowel Disease

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7588))

Included in the following conference series:

  • 2184 Accesses

Abstract

Confocal Endomicroscopy (CEM) is a newly developed diagnosis tool which provides in vivo examination of the gastrointestinal (GI) histological architecture, avoiding the traditional biopsy . The analysis of CEM images is a challenging task for experts, since there isn’t a clearly defined taxonomy of the several disease stages. We aim at building an automatic on-the-fly classifier to provide useful clinical advices for diagnosis. In this work, we propose to make a split between two main subsets of our expert-annotated database: low and high probability of pathology. We focus on segmentation techniques to extract relevant histological structures, and then encode this information in a feature vector used for classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. André, B., Vercauteren, T., Buchner, A.M., Wallace, M.B., Ayache, N.: A Smart Atlas for Endomicroscopy using Automated Video Retrieval. Medical Image Analysis 15(4), 460–476 (2011)

    Article  Google Scholar 

  2. André, B., Vercauteren, T., Perchant, A., Buchner, A.M., Wallace, M.B., Ayache, N.: Introducing Space and Time in Local Feature-Based Endomicroscopic Image Retrieval. In: Caputo, B., Müller, H., Syeda-Mahmood, T., Duncan, J.S., Wang, F., Kalpathy-Cramer, J. (eds.) MCBR-CDS 2009. LNCS, vol. 5853, pp. 18–30. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Canny, J.: A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  4. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  5. Hoffman, A., Goetz, M., Vieth, M., Galle, P.R., Neurath, M.F., Kiesslich, R.: Confocal laser endomicroscopy: technical status and current indications. Endoscopy 38(12), 1275–1283 (2006)

    Article  Google Scholar 

  6. Hsu, C.-W., Chang, C.-C., Lin, C.-J.: A practical guide to support vector classification. Technical report, Department of Computer Science, National Taiwan University (2003)

    Google Scholar 

  7. Kovesi, P.: Symmetry and Asymmetry from Local Phase. In: Sattar, A. (ed.) Canadian AI 1997. LNCS, vol. 1342, pp. 2–4. Springer, Heidelberg (1997)

    Google Scholar 

  8. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  9. Manavalan, R., Thangavel, K.: Evaluation of textural feature extraction methods for prostate cancer trus medical images. International Journal of Computer Applications 36(12), 33–39 (2011)

    Google Scholar 

  10. Melo, R., Barreto, J.P., Falcao, G.: A new solution for camera calibration and real-time image distortion correction in medical endoscopy-initial technical evaluation. IEEE Trans. Biomed. Engineering 59(3), 634–644 (2012)

    Article  Google Scholar 

  11. Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: ICCV, pp. 1470–1477 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Couceiro, S., Barreto, J.P., Freire, P., Figueiredo, P. (2012). Description and Classification of Confocal Endomicroscopic Images for the Automatic Diagnosis of Inflammatory Bowel Disease. In: Wang, F., Shen, D., Yan, P., Suzuki, K. (eds) Machine Learning in Medical Imaging. MLMI 2012. Lecture Notes in Computer Science, vol 7588. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35428-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35428-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35427-4

  • Online ISBN: 978-3-642-35428-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics