Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Another Jump Inversion Theorem for Structures

  • Conference paper
The Nature of Computation. Logic, Algorithms, Applications (CiE 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7921))

Included in the following conference series:

Abstract

In this paper we investigate the question of existence of a jump inversion structure for a given structure \(\mathcal{A}\) in the context of their respective degree spectra and the sets definable in them by computable infinitary formulae. More specifically, for a countable structure \(\mathcal{A}\) and a computable successor ordinal α, we show that we can apply the construction from [4] to build a structure \(\mathcal{N}_\alpha\) such that the sets definable in \(\mathcal{A}\) by \(\Sigma^{c,\Delta^0_\alpha}_1\) formulae are exactly the sets definable in \(\mathcal{N}_\alpha\) by \(\Sigma^{c}_{\alpha}\) formulae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ash, C., Knight, J.: Computable Structures and the Hyperarithmetical Hierarchy. Elsevier Science (2000)

    Google Scholar 

  2. Ash, C., Knight, J., Manasse, M., Slaman, T.: Generic Copies of Countable Structures. Annals of Pure and Applied Logic 42, 195–205 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chisholm, J.: Effective Model Theory vs. Recursive Model Theory. The Journal of Symbolic Logic 55(3), 1168–1191 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Goncharov, S., Harizanov, V., Knight, J., McCoy, C., Miller, R., Solomon, R.: Enumerations in computable structure theory. Annals of Pure and Applied Logic 136, 219–246 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Richter, L.: Degrees of Structures. The Journal of Symbolic Logic 46(4), 723–731 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Soskova, A., Soskov, I.: A Jump Inversion Theorem for the Degree Spectra. Journal of Logic and Computation 19, 199–215 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Stukachev, A.I.: A Jump Inversion Theorem for the semilttices of Σ-degrees. Siberian Advances in Mathematics 20(1), 68–74 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vatev, S. (2013). Another Jump Inversion Theorem for Structures. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds) The Nature of Computation. Logic, Algorithms, Applications. CiE 2013. Lecture Notes in Computer Science, vol 7921. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39053-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39053-1_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39052-4

  • Online ISBN: 978-3-642-39053-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics