Abstract
Aggregate statistics computed from time-series data contributed by individual mobile nodes can be very useful for many mobile sensing applications. Since the data from individual node may be privacy-sensitive, the aggregator should only learn the desired statistics without compromising the privacy of each node. To provide strong privacy guarantee, existing approaches add noise to each node’s data and allow the aggregator to get a noisy sum aggregate. However, these approaches either have high computation cost, high communication overhead when nodes join and leave, or accumulate a large noise in the sum aggregate which means high aggregation error. In this paper, we propose a scheme for privacy-preserving aggregation of time-series data in presence of untrusted aggregator, which provides differential privacy for the sum aggregate. It leverages a novel ring-based interleaved grouping technique to efficiently deal with dynamic joins and leaves and achieve low aggregation error. Specifically, when a node joins or leaves, only a small number of nodes need to update their cryptographic keys. Also, the nodes only collectively add a small noise to the sum to ensure differential privacy, which is O(1) with respect to the number of nodes. Based on symmetric-key cryptography, our scheme is very efficient in computation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Thiagarajan, A., Ravindranath, L., LaCurts, K., Madden, S., Balakrishnan, H., Toledo, S., Eriksson, J.: Vtrack: accurate, energy-aware road traffic delay estimation using mobile phones. In: Proc. SenSys, pp. 85–98 (2009)
Mun, M., Reddy, S., Shilton, K., Yau, N., Burke, J., Estrin, D., Hansen, M., Howard, E., West, R., Boda, P.: Peir, the personal environmental impact report, as a platform for participatory sensing systems research. In: Proc. ACM MobiSys, pp. 55–68 (2009)
Lane, N.D., Mohammod, M., Lin, M., Yang, X., Lu, H., Ali, S., Doryab, A., Berke, E., Choudhury, T., Campbell, A.: Bewell: A smartphone application to monitor, model and promote wellbeing. In: Intl. ICST Conf. on Pervasive Computing Technologies for Healthcare (2011)
Hicks, J., Ramanathan, N., Kim, D., Monibi, M., Selsky, J., Hansen, M., Estrin, D.: Andwellness: an open mobile system for activity and experience sampling. In: Proc. Wireless Health, pp. 34–43 (2010)
Hull, B., Bychkovsky, V., Zhang, Y., Chen, K., Goraczko, M., Miu, A., Shih, E., Balakrishnan, H., Madden, S.: Cartel: a distributed mobile sensor computing system. In: SenSys (2006)
Honicky, R., Brewer, E.A., Paulos, E., White, R.: N-smarts: networked suite of mobile atmospheric real-time sensors. In: NSDR (2008)
Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series with transformation and encryption. In: ACM SIGMOD (2010)
Shi, E., Chan, T.-H.H., Rieffel, E., Chow, R., Song, D.: Privacy-preserving aggregation of time-series data. In: Network and Distributed System Security Symposium, NDSS (2011)
Chan, T.-H.H., Shi, E., Song, D.: Privacy-preserving stream aggregation with fault tolerance. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 200–214. Springer, Heidelberg (2012)
Jawurek, M., Kerschbaum, F.: Fault-tolerant privacy-preserving statistics. In: Fischer-Hübner, S., Wright, M. (eds.) PETS 2012. LNCS, vol. 7384, pp. 221–238. Springer, Heidelberg (2012)
Dwork, C.: Differential privacy. Invited talk at ICALP (2006)
Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)
Li, Q., Cao, G.: Providing privacy-aware incentives for mobile sensing. In: Proc. IEEE PerCom (2013)
Zhu, Z., Cao, G.: Applaus: A privacy-preserving location proof updating system for location-based services. In: Proc. IEEE INFOCOM (2011)
Cristofaro, E.D., Soriente, C.: Short paper: Pepsi—privacy-enhanced participatory sensing infrastructure. In: Proc. ACM WiSec, pp. 23–28 (2011)
Li, Q., Cao, G.: Mitigating routing misbehavior in disruption tolerant networks. IEEE Transactions on Information Forensics and Security 7(2), 664–675 (2012)
Castelluccia, C., Chan, A.C.-F., Mykletun, E., Tsudik, G.: Efficient and provably secure aggregation of encrypted data in wireless sensor networks. ACM Transactions on Sensor Networks (TOSN) 5(3), 20:1–20:36 (2009)
Shi, J., Zhang, R., Liu, Y., Zhang, Y.: Prisense: privacy-preserving data aggregation in people-centric urban sensing systems. In: Proc. IEEE INFOCOM, pp. 758–766 (2010)
Rieffel, E.G., Biehl, J., van Melle, W., Lee, A.J.: Secured histories: computing group statistics on encrypted data while preserving individual privacy (2010) (submission)
Li, Q., Cao, G.: Efficient and privacy-preserving data aggregation in mobile sensing. In: Proc. IEEE ICNP (2012)
Chen, R., Reznichenko, A., Francis, P., Gehrke, J.: Towards statistical queries over distributed private user data. In: Proc. of NSDI (2012)
Proserpio, D., Goldberg, S., McSherry, F.: A workflow for differentially-private graph synthesis. In: Proc. ACM Workshop on Online Social Networks, WOSN, pp. 13–18 (2012)
Sala, A., Zhao, X., Wilson, C., Zheng, H., Zhao, B.Y.: Sharing graphs using differentially private graph models. In: Proc. ACM IMC, pp. 81–98 (2011)
Shao, M., Yang, Y., Zhu, S., Cao, G.: Towards statistically strong source anonymity for sensor networks. In: Proc. IEEE INFOCOM (2008)
Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 446–465. Springer, Heidelberg (2000)
Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing privacy mechanisms. In: ACM Symposium on Theory of Computing, STOC, pp. 351–360 (2009)
Li, Q., Cao, G.: Efficient privacy-preserving stream aggregation in mobile sensing with low aggregation error. Technical Report, The Pennsylvania State University (April 2013), http://www.cse.psu.edu/~qxl118/papers/li2013tr.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, Q., Cao, G. (2013). Efficient Privacy-Preserving Stream Aggregation in Mobile Sensing with Low Aggregation Error. In: De Cristofaro, E., Wright, M. (eds) Privacy Enhancing Technologies. PETS 2013. Lecture Notes in Computer Science, vol 7981. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39077-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-39077-7_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39076-0
Online ISBN: 978-3-642-39077-7
eBook Packages: Computer ScienceComputer Science (R0)