Abstract
Extending bilinear elliptic curve pairings to multilinear maps is a long-standing open problem. The first plausible construction of such multilinear maps has recently been described by Garg, Gentry and Halevi, based on ideal lattices. In this paper we describe a different construction that works over the integers instead of ideal lattices, similar to the DGHV fully homomorphic encryption scheme. We also describe a different technique for proving the full randomization of encodings: instead of Gaussian linear sums, we apply the classical leftover hash lemma over a quotient lattice. We show that our construction is relatively practical: for reasonable security parameters a one-round 7-party Diffie-Hellman key exchange requires less than 40 seconds per party. Moreover, in contrast with previous work, multilinear analogues of useful, base group assumptions like DLIN appear to hold in our setting.
Chapter PDF
Similar content being viewed by others
Keywords
- Full Version
- Ideal Lattice
- Homomorphic Encryption
- Cryptology ePrint Archive
- Homomorphic Encryption Scheme
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Agrawal, S., Gentry, C., Halevi, S., Sahai, A.: Discrete Gaussian Leftover Hash Lemma over infinite domains. Cryptology ePrint Archive, Report 2012/714 (2012), http://eprint.iacr.org/
Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Contemporary Mathematics 324, 71–90 (2003)
Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.: Batch fully homomorphic encryption over the integers. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer, Heidelberg (2013)
Cohn, H., Heninger, N.: Approximate common divisors via lattices. In: ANTS X (2012)
Coron, J.-S., Lepoint, T., Tibouchi, M.: Batch fully homomorphic encryption over the integers. Cryptology ePrint Archive, Report 2013/036 (2013), http://eprint.iacr.org/
Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. Cryptology ePrint Archive, Report 2013/183 (2013), http://eprint.iacr.org/
Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryption over the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011)
Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common divisors: Breaking fully-homomorphic-encryption challenges over the integers. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 502–519. Springer, Heidelberg (2012)
van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)
Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford University (2009), http://crypto.stanford.edu/craig
Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)
Gentry, C., Halevi, S.: Implementing Gentry’s fully-homomorphic encryption scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011)
Granlund, T., and the GMP development team: GNU MP: The GNU Multiple Precision Arithmetic Library, 5.1.1 edition (2013), http://gmplib.org/
Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM Journal on Computing 28, 12–24 (1999)
Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms using dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 447–464. Springer, Heidelberg (2011)
Lepoint, T.: An Implementation of Multilinear Maps over the Integers. Available under the Creative Commons License BY-NC-SA at https://github.com/tlepoint/multimap
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 International Association for Cryptologic Research
About this paper
Cite this paper
Coron, JS., Lepoint, T., Tibouchi, M. (2013). Practical Multilinear Maps over the Integers. In: Canetti, R., Garay, J.A. (eds) Advances in Cryptology – CRYPTO 2013. CRYPTO 2013. Lecture Notes in Computer Science, vol 8042. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40041-4_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-40041-4_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40040-7
Online ISBN: 978-3-642-40041-4
eBook Packages: Computer ScienceComputer Science (R0)