Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Imprecise Data Envelopment Analysis: Concepts, Methods, and Interpretations

  • Chapter
  • First Online:
Performance Measurement with Fuzzy Data Envelopment Analysis

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 309))

Abstract

DEA has proven to be a useful tool for assessing efficiency or productivity of organizations. While DEA assumes exact input and output data, the development of imprecise DEA (IDEA) broadens the scope of applications to efficiency evaluations involving imprecise information which implies various forms of ordinal and bounded data often occurring in practice. The primary purpose of this article is to review what has been developed so far, including the body of concepts and methods that go by the name of IDEA. This review comprises (a) why we look at imprecise data and how to elicit imprecise information, (b) how to calculate the efficiency measures, and (c) how we can interpret the resulting efficiency. Special emphasis will be placed on how to deal with strict inequality types of imprecise data, such as strict orders and strict bounds, rather than weak inequalities. A general approach to these strict imprecise data is presented, in order to arrive at efficiency scores. This approach first constructs a nonlinear program, transform it into a linear programming equivalent, and finally solve it via a two-stage method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cook, W.D., Kress, M., Seiford, L.M.: On the use of ordinal data in data envelopment analysis. J. Oper. Res. Soc. 44, 133–140 (1993)

    MATH  Google Scholar 

  2. Cook, W.D., Kress, M., Seiford, L.M.: Data envelopment analysis in the presence of both quantitative and qualitative factors. J. Oper. Res. Soc. 47, 945–953 (1996)

    MATH  Google Scholar 

  3. Cooper, W.W., Park, K.S., Yu, G.: IDEA and AR-IDEA: models for dealing with imprecise data in DEA. Manag. Sci. 45, 597–607 (1999)

    Article  MATH  Google Scholar 

  4. Cooper, W.W., Park, K.S., Yu, G.: An illustrative application of IDEA (imprecise data envelopment analysis) to a Korean mobile telecommunication company. Opns. Res. 49, 807–820 (2001)

    Article  MATH  Google Scholar 

  5. Cooper, W.W., Park, K.S., Yu, G.: IDEA (imprecise data envelopment analysis) with CMDs (column maximum decision making units). J. Oper. Res. Soc. 52, 176–181 (2001)

    Article  MATH  Google Scholar 

  6. Kim, S.H., Park, C.K., Park, K.S.: An application of data envelopment analysis in telephone offices evaluation with partial data. Comp. Oper. Res. 26, 59–72 (1999)

    Article  MATH  Google Scholar 

  7. Park, K.S.: Simplification of the transformations and redundancy of assurance regions in IDEA (imprecise DEA). J. Oper. Res. Soc. 55, 1363–1366 (2004)

    Article  MATH  Google Scholar 

  8. Zhu, J.: Imprecise data envelopment analysis (IDEA): a review and improvement with an application. Eur. J. Oper. Res. 144, 513–529 (2003)

    Article  MATH  Google Scholar 

  9. Zhu, J.: Efficiency evaluation with strong ordinal input and output measures. Eur. J. Oper. Res. 146, 477–485 (2003)

    Article  MATH  Google Scholar 

  10. Zhu, J.: Imprecise DEA via standard linear DEA models with a revisit to a Korean mobile telecommunication company. Opns. Res. 52, 323–329 (2004)

    Article  MATH  Google Scholar 

  11. Cook, W.D., Zhu, J.: Rank order data in DEA: a general framework. Eur. J. Oper. Res. 174, 1021–1038 (2005)

    Article  Google Scholar 

  12. Despotis, D.K., Smirlis, Y.G.: Data envelopment analysis with imprecise data. Eur. J. Oper. Res. 140, 24–36 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kao, C.: Interval efficiency measures in data envelopment analysis with imprecise data. Eur. J. Oper. Res. 174, 1087–1099 (2006)

    Article  MATH  Google Scholar 

  14. Park, K.S.: Efficiency bounds and efficiency classifications in DEA with imprecise data. J. Oper. Res. Soc. 58, 533–540 (2007)

    Article  MATH  Google Scholar 

  15. Kao, C., Liu, S.T.: Fuzzy efficiency measures in data envelopment analysis. Fuzzy Sets and Sys 113, 427–437 (2000)

    Article  MATH  Google Scholar 

  16. Kao, C., Liu, S.T.: Data envelopment analysis with missing data: an application to university libraries in Taiwan. J. Oper. Res. Soc. 51, 897–905 (2000)

    MATH  Google Scholar 

  17. Hougaard, J.L.: Fuzzy scores of technical efficiency. Eur. J. Oper. Res. 115, 529–541 (1999)

    Article  MATH  Google Scholar 

  18. Guo, P., Tanaka, H.: Fuzzy DEA: a perceptual evaluation method. Fuzzy Sets and Sys 119, 149–160 (2001)

    Article  MathSciNet  Google Scholar 

  19. Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A.: Foundations of Measurement. Academic Press, New York (1971)

    MATH  Google Scholar 

  20. Dyer, J.S., Sarin, R.K.: Measurable multiattribute value functions. Opns. Res. 27, 810–822 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Keeney, R., Raiffa, H.: Decisions with Multiple Objectives. John Wiley and Sons, New York (1976)

    Google Scholar 

  22. Sage, A.P., White, C.C.: ARIADNE: a knowledge-based interactive system for planning and decision support. IEEE Trans. Sys. Man Cybern. 14, 35–47 (1984)

    Article  MathSciNet  Google Scholar 

  23. Park, K.S., Kim, S.H.: Tools for interactive multiattribute decisionmaking with incompletely identified information. Eur. J. Oper. Res. 98, 111–123 (1997)

    Article  MATH  Google Scholar 

  24. Park, K.S.: Mathematical programming models for characterizing dominance and potential optimality when multicriteria alternative values and weights are simultaneously incomplete. IEEE Trans. Sys. Man Cybern. Part A 34, 601–614 (2004)

    Article  Google Scholar 

  25. Belton, V., Vickers, S.P.: Demystifying DEA – a visual interactive approach based on multiple criteria analysis. J. Oper. Res. Soc. 44, 883–896 (1993)

    MATH  Google Scholar 

  26. Stewart, T.J.: Relationships between data envelopment analysis and multi-criteria decision analysis. J. Oper. Res. Soc. 47, 654–665 (1996)

    MATH  Google Scholar 

  27. Bouyssou, D.: Using DEA as a tool for MCDM: some remarks. J. Oper. Res. Soc. 50, 974–978 (1999)

    MATH  Google Scholar 

  28. Malakooti, B.: Ranking and screening multiple criteria alternatives with partial information and use of ordinal and cardinal strength of preferences. IEEE Trans. Sys. Man Cybern. Part A 30, 355–368 (2000)

    Article  Google Scholar 

  29. Arnold, V., Bardhan, I., Cooper, W.W., Gallegos, A.: Primal and dual optimality in computer codes using two-stage solution procedures in DEA. In: Aranson, J., Zionts, S. (eds.), Operations Research: Methods, Models and Applications. Quorum Books, Westport, CT, pp. 57–96 (1998)

    Google Scholar 

  30. Thompson, R.G., Dharmapala, P.S., Thrall, R.M.: Linked-cone DEA profit ratios and technical efficiency with application to Illinois coal mines. Int. J. Prod. Econ. 39, 99–115 (1995)

    Article  Google Scholar 

  31. Thompson, R.G., Langemeier, L.N., Lee, C.T., Lee, E., Thrall, R.M.: The role of multiplier bounds in efficiency analysis with applications to Kansas farming. J E’conom. 46, 93–108 (1990)

    Google Scholar 

  32. Charnes, A., Cooper, W.W., Huang, Z.M., Sun, D.B: Polyhedral cone-ratio DEA models with an illustrative application to large commercial banks. J. E’conom. 46: 73–91 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sam Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Park, K.S. (2014). Imprecise Data Envelopment Analysis: Concepts, Methods, and Interpretations. In: Emrouznejad, A., Tavana, M. (eds) Performance Measurement with Fuzzy Data Envelopment Analysis. Studies in Fuzziness and Soft Computing, vol 309. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41372-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41372-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41371-1

  • Online ISBN: 978-3-642-41372-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics