Abstract
In this paper we focus on tests and constructions of irreducible polynomials over finite fields. We revisit Rabin’s (1980) algorithm providing a variant of it that improves Rabin’s cost estimate by a log n factor. We give a precise analysis of the probability that a random polynomial of degree n contains no irreducible factors of degree less than O(log n). This probability is naturally related to Ben-Or’s (1981) algorithm for testing irreducibility of polynomials over finite fields. We also compute the probability of a polynomial being irreducible when it has no irreducible factors of low degree. This probability is useful in the analysis of various algorithms for factoring polynomials over finite fields. We present an experimental comparison of these irreducibility methods when testing random polynomials.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ben-Or, M. Probabilistic algorithms in finite fields. In Proc. 22nd IEEE Symp. Foundations Computer Science (1981), pp. 394 – 398.
Blake, I., Gao, S., AND Lambert, R. Constructive problems for irreducible polynomials over finite fields. In Information Theory and Applications, A. Gulliver and N. Secord, Eds., vol. 793 of Lecture Notes in Computer Science. Springer-Verlag, 1994, pp. 12 – 23.
Blake, I., GAO, S., and Mullin, R. Explicit factorization of x2k + 1 over Fp with prime p ≡ 3 (mod 4). Appi Alg. Eng. Comm. Comp.4 (1993), 89 – 94.
Butler, M. On the reducibility of polynomials over a finite field. Quart. J. Math. Oxford 5(1954), 102 – 107.
Cantor, D., and Kaltofen, E. On fast multiplication of polynomials over arbitrary algebras. Acta. Inform. 28(1991), 693 – 701.
Coppersmith, D. Fast evaluation of logarithms in fields of characteristic two. IEEE Trans. Info. Theory 30(1984), 587 – 594.
Flajolet, P., Gourdon, X., and Panario, D. Random polynomials and polynomial factorization. In Proc. 23rd ICALP Symp. (1996), vol. 1099 of Lecture Notes in Computer Science, Springer-Verlag, pp. 232–243.
Flajolet, P., and Odlyzko, A. Singularity analysis of generating functions. SIAM Journal on Discrete Mathematics 3 2(1990), 216 – 240.
Gao, S., Von Zur Gathen, J., And Panario, D. Gauss periods and efficient arithmetic in finite fields. Submitted to Journal of Symbolic Computation (extended abstract in Proc. LATIN’95, vol. 911 of Lecture Notes in Computer Science, 311 – 322 ), 1995.
Gao, S., And Mullen, G. Dickson polynomials and irreducible polynomials over finite fields. J. Number Theory 49(1994), 118 – 132.
Gao, S., and Panario, D. Density of normal elements. Submitted to Finite Fields and their Applications (abstract in AMS Abstracts 102Fall 1995, # 904-68–227, p. 798 ), 1995.
Von Zur Gathen, J., And Gerhard, J. Arithmetic and factorization of polynomials over F2. In Proc. ISSAC’96, Zürich, Switzerland(1996), L. Y.N., Ed., ACM press, pp. 1 – 9.
Von Zur Gathen, J., and Panario, D. A survey on factoring polynomials over finite fields. Submitted to the special issue of the MAGMA conference in J. Symb. Comp., 1996.
Von Zur Gathen, J., and Shoup, V. Computing Frobenius maps and factoring polynomials. Comput complexity 2(1992), 187 – 224.
Golomb, S. W. Shift register sequences. Aegean Park Press, Laguna Hills, California, 1982.
Graham, R., Knuth, D., and Patashnik, O. Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994.
Ireland, K., and Rosen, M. A Classical Introduction to Modern Number Theory, 2nd ed. Springer-Verlag, Berlin, 1990.
Kaltofen, E., and Shoup, V. Subquadratic-time factoring of polynomials over finite fields. In Proc. 27th ACM Symp. Theory of Computing(1995), pp. 398 – 406.
Knopfmacher, J., And Knopfmacher, A. Counting irreducible factors of polynomials over a finite field. SIAM Journal on Discrete Mathematics 112(1993), 103 – 118.
Knuth, D. The art of computer programming, vol.2: seminumerical algorithms, 2nd ed. Addison-Wesley, Reading MA, 1981.
Lidl, R., and Niederreiter, H. Finite fields, vol. 20 of Encyclopedia of Mathematics and its Applications. Addison-Wesley, Reading MA, 1983.
Menezes, A., Blake, I., Gao, X., Mullin, R., Vanstone, S., and Yaghoo-Bian, T. Applications of Finite Fields. Kluwer Academic Publishers, Boston, Dordrecht, Lancaster, 1993.
Odlyzko, A. Discrete logarithms and their cryptographic significance. In Advances in Cryptology, Proceedings of Eurocrypt 1984 (1985), vol. 209 of Lecture Notes in Computer Science, Springer-Verlag, pp. 224–314.
Odlyzko, A. Asymptotic enumeration methods. In Handbook of Combinatorics, R. Graham, M. Gròtschel, and L. Lovász, Eds. Elsevier, 1996.
Panario, D. Combinatorial and algebraic aspects of polynomials over finite fields. PhD Thesis, in preparation, 1996.
Rabin, M. O. Probabilistic algorithms in finite fields. SIAM J. Comp. 9(1980), 273 – 280.
Schönhage, A. Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta Inf. 7(1977), 395 – 398.
Schönhage, A., and Strassen, V. Schnelle Multiplikation großer Zahlen. Computing 7(1971), 281 – 292.
Sedgewick, R., AND Flajolet, P. An Introduction to the Analysis of Algorithms. Addison-Wesley, Reading MA, 1996.
Shepp, L., and Lloyd, S. Ordered cycle lengths in a random permutation. Trans. Amer. Math. Soc. 121(1966), 340 – 357.
Shoup, V. Fast construction of irreducible polynomials over finite fields. J. Symb. Comp. 17(1995), 371–391.
Shoup, V. A new polynomial factorization algorithm and its implementation. J. Symb. Comp. 20(1996), 363–397.
Shparlinski, . Finding irreducible and primitive polynomials. Appl. Alg. Eng. Comm. Comp. 4(1993), 263–268.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gao, S., Panario, D. (1997). Tests and Constructions of Irreducible Polynomials over Finite Fields. In: Cucker, F., Shub, M. (eds) Foundations of Computational Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60539-0_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-60539-0_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61647-4
Online ISBN: 978-3-642-60539-0
eBook Packages: Springer Book Archive