Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Critical Survey of Music Image Analysis

  • Chapter
Structured Document Image Analysis

Abstract

The research literature concerning the automatic analysis of images of printed and handwritten music notation, for the period 1966 through 1990, is surveyed and critically examined.

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Andronico and A. Ciampa. On automatic pattern recognition and acquisition of printed music. In Proceedings, International Computer Music Conference, pages 245–278, Venice, Italy, 1982. Computer Music Association Publications.

    Google Scholar 

  2. H. Aoyama and A. Tojo. Automatic recognition of printed music. TG, PRL82-5:33–40, 1982. In Japanese.

    Google Scholar 

  3. D. Blostein and L. Haken. Justification of printed music. Communications of the ACM, 34 (3): 88–99, March 1991.

    Article  Google Scholar 

  4. N. P. Carter. Automatic Recognition of Printed Music in the Context of Electronic Publishing. PhD thesis, Univ. of Surrey, Depts. of Physics and Music, February 1989. 174 pages.

    Google Scholar 

  5. N. P. Carter and R. A. Bacon. Automatic recognition of printed music. In this volume.

    Google Scholar 

  6. N. Carter, R. A. Bacon, and T. Messenger. The acquisition, representation and reconstruction of printed music by computer: A survey. Computers and the Humanities, 22: 117–136, 1988.

    Article  Google Scholar 

  7. A. Clarke, B. M. Brown, and M. P. Thorne. Inexpensive optical character recognition of music notation: A new alternative for publishers. In Proceedings, Computers In Music Research Conference, Bailrigg, Lancaster LA1 4YW, U.K., 11–14 April 1988. Sponsored by Ctr for Res. into the Applications of Computers to Music, Dept. of Music, Univ. of Lancaster; 6 pages.

    Google Scholar 

  8. A. T. Clarke, B. M. Brown, and M. P. Thorne. Using a micro to automate data acquisition in music publishing. Microprocessing and Microprogramming, 24: 549–554, 1988.

    Article  Google Scholar 

  9. A. T. Clarke, B. M. Brown, and M. P. Thorne. Coping with some really rotten problems in automatic music recognition. Microprocessing and Microprogramming, 29: 547–550, 1989.

    Article  Google Scholar 

  10. M. Eden. Other pattern-recognition problems and some generalizations. In P. Kolers and M. Eden, editors, Recognizing Patterns, pages 196–225. MIT Press, Cambridge, Massachusetts, 1968.

    Google Scholar 

  11. I. Fujinaga, B. Alphonce, and B. Pennycook. Issues in the design of an optical music recognition system. In Proceedings, 1989 International Computer Music Conference, Columbus, Ohio, 2–5 November 1989. 4 pages.

    Google Scholar 

  12. I. Fujinaga, B. Alphonce, B. Pennycook, and N. Boisvert. Optical recognition of musical notation by computer. Computers in Music Research Newsletter, No. 1, 1989. 4 pages.

    Google Scholar 

  13. I. Fujinaga. Optical music recognition using projections. Master’s thesis, McGill University, Faculty of Music, Montreal, CANADA, September 1988. For an M.A. in Music Theory; 67 pages.

    Google Scholar 

  14. Mu Research Group. Automated recognition system for musical score. Bulletin 112, Science and Engineering Laboratory, Waseda University, 6-1 Nishiwaseda 1-chome, Shinjuku-ku, Tokyo 160, 1985. 28 pages.

    Google Scholar 

  15. J. Groever. A computer-oriented description of music notation. Technical report, MUSIKUS, Department of Music, University of Oslo, P.O.Box 1017, Blindern, N-0315 Oslo 3, Norway, 1990. Contact: Arvid Vollsnes arvid@ifi.uio.no.

    Google Scholar 

  16. K. Hachimura and Y. Ohno. A system for the representation of human body movement from dance scores. Pattern Recognition Letters, 5: 1–9, January 1987.

    Article  Google Scholar 

  17. A. Hutchinson. Labanotation. Theater Art Books, New York, NY, 1970.

    Google Scholar 

  18. T. Itagaki, M. Isogai, S. Hashimoto, and S. Ohteru. Automatic recognition of several types of musical notation. In this volume.

    Google Scholar 

  19. M. Kassler. An essay toward specification of a music-reading machine. In B. S. Brook, editor, Musicology and the Computer, pages 151–175. City University of NY Press, New York, NY, 1970.

    Google Scholar 

  20. M. Kassler. Optical-character recognition of printed music: A review of two dissertations. Perspectives on New Music, 11 (l): 250–254, Fall-Winter 1972.

    Google Scholar 

  21. KI91] H. Kato and S. Inokuchi. A recognition system for printed piano music using musical knowledge and constraints. In this volume.

    Google Scholar 

  22. Myung Woo Lee and Jong Soo Choi. The recognition of printed music score and performance using computer vision system. Journal of the Korean Institute of Electronic Engineers, 22(5):429–435, 5 September 1985. In Korean; English translation available from H. S. Baird.

    Google Scholar 

  23. J. V. Mahoney. Automatic analysis of musical score images. B. S. thesis, Dept of Computer Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02129, May 1982.

    Google Scholar 

  24. N. Martin. Towards computer recognition of the printed musical score. B project report, Thames Polytechnic, Woolwich, London, May 1987.

    Google Scholar 

  25. T. Matsushima. Automated high speed recognition of printed music (Wabot-2 vision system). In Proceedings, 1985 International Conference on Advanced Robotics, pages 477–482. Japan Industrial Robot Association (JIRA), 3-5-8, Shiba Koen Minato-ku, Tokyo, 1985.

    Google Scholar 

  26. T. Matsushima, S. Ohteru, and S. Hashimoto. An integrated music information processing system: PSB-er. In Proceedings, 1989 International Computer Music Conference, pages 191–198, Columbus, Ohio, November 1989.

    Google Scholar 

  27. G. Nelson and T. R. Penney. Pattern recognition in musical score — project no. m88. Computers and the Humanities, 8: 50–51, 1973.

    Google Scholar 

  28. Y. Nakamura, M. Shindo, and S. Inokuchi. Input method of [musical] note and realization of folk music data-base. TG, PRL78-73:41–50, 1978. In Japanese.

    Google Scholar 

  29. S. Ohteru. A multi processor system for high speed recognition of printed music. Natl. Conv. (Rec.), 1984.

    Google Scholar 

  30. M. Onoe, M. Ishizuka, and K. Tsuboi. Experiment on automatic music reading. In Proceedings, 20th IPS J National Conference, volume 6F-5, 1979. In Japanese.

    Google Scholar 

  31. B. Østenstad. Oppdeling av objektene i et digitalt notebild i klassifiserbare enheter. Rapport 31, Bildebehandlingslaboratoriet, Institutt for infor- matikk, Universitetet i Oslo, Oslo, Norway, October 1988. In Norwegian; 57 pages.

    Google Scholar 

  32. B. Pennycook. Towards advanced optical music recognition. Advanced Imaging, April 1990. 3-page magazine article.

    Google Scholar 

  33. D. S. Prerau. Computer Pattern Recognition of Standard Engraved Music Notation. PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, September 1970. 240 pages.

    Google Scholar 

  34. D. S. Prerau. Computer pattern recognition of printed music. In Proceedings, Fall Joint Computer Conference, volume 39, pages 153–162, Montvale, NJ, November 1971. A.F.I.P.S. Press.

    Google Scholar 

  35. D. S. Prerau. Do-re-mi: A program that recognizes music notation. Computers and the Humanities, 9: 25–29, 1975.

    Article  Google Scholar 

  36. D. H. Pruslin. Automatic Recognition of Sheet Music. PhD thesis, Massachusetts Institite of Technology, June 1966. Sc.D. dissertation; 94 pages.

    Google Scholar 

  37. G. Read. Music Notation: A Manual of Modem Practice (2nd Edition). Taplinger Publishing, New York, NY, 1979.

    Google Scholar 

  38. C. Roads. The Tsukuba musical robot. Computer Music Journal, 10 (2): 39–43, Summer 1986.

    Google Scholar 

  39. T. Ross. The Art of Music Engraving and Processing (2nd Edition). Hansen Books, Miami, FL, 1970.

    Google Scholar 

  40. D. Roush. Music formatting guidelines. Technical Report OSU-3/88-TR10, Department of Computer and Information Science, The Ohio State University, 1988.

    Google Scholar 

  41. J. W. Roach and J. E. Tat em. Using domain knowledge in low-level visual processing to interpret handwritten music: an experiment. Pattern Recognition, 21 (l): 33–44, 1988.

    Article  Google Scholar 

  42. I. Sonomoto, T. Harada, T. Matsushima, K. Kanamori, M. Konuma, A. Uesugi, Y. Nimura, S. Hashimoto, and S. Ohteru. Automatic recognition system of printed music for playing keyboards. TG, MA84-22:17–22, 1985. In Japanese.

    Google Scholar 

  43. K. Stone. Music Notation in the Twentieth Century: A Practical Guidebook. W. W. Norton & Co., New York, NY, 1980.

    Google Scholar 

  44. A. Tojo and H. Aoyama. Automatic recognition of music score. In Proceedings, 6th International Conference on Pattern Recognition, page 1223, Munich, W. Germany, 1982. Short English version of longer Japanese [AT82].

    Google Scholar 

  45. S. Tawada. Dance score input system for the representation of human body movement. B.S. thesis, Educational Center for Inf. Proc., Kyoto University, Kyoto 606, Japan, 1986. In Japanese; 59 pages.

    Google Scholar 

  46. E. Thorud. Analyse av notebilder. Rapport 28, Bildebehandlingslaboratoriet, Institutt for informatikk, Universitetet i Oslo, Oslo, Norway, August 1988. In Norwegian; 63 pages.

    Google Scholar 

  47. S. Tønnesland. SYMFONI: System for notekoding. Technical report, Institute of Informatics, P.O. Box 1080 Blindem, N-0316 Oslo 3, Norway, November 1986. In Norwegian; generously illustrated; 90 pages.

    Google Scholar 

  48. G. Wittlich. Project SCORE. Computational Musicology Newsletter, 1(1):6, 1973. Abstract of paper from International Conference on Computers in the Humanities, University of Minnesota, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blostein, D., Baird, H.S. (1992). A Critical Survey of Music Image Analysis. In: Baird, H.S., Bunke, H., Yamamoto, K. (eds) Structured Document Image Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77281-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77281-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77283-2

  • Online ISBN: 978-3-642-77281-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics