Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Gaussian Based Particle Swarm Optimisation and Statistical Clustering for Feature Selection

  • Conference paper
Evolutionary Computation in Combinatorial Optimisation (EvoCOP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8600))

  • 1496 Accesses

Abstract

Feature selection is an important but difficult task in classification, which aims to reduce the number of features and maintain or even increase the classification accuracy. This paper proposes a new particle swarm optimisation (PSO) algorithm using statistical clustering information to solve feature selection problems. Based on Gaussian distribution, a new updating mechanism is developed to allow the use of the clustering information during the evolutionary process of PSO based on which a new algorithm (GPSO) is developed. The proposed algorithm is examined and compared with two traditional algorithms and a PSO based algorithm which does not use clustering information on eight benchmark datasets of varying difficulty. The results show that GPSO can be successfully used for feature selection to reduce the number of features and achieve similar or even better classification performance than using all features. Meanwhile, it achieves better performance than the two traditional feature selection algorithms. It maintains the classification performance achieved by the standard PSO for feature selection algorithm, but significantly reduces the number of features and the computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dash, M., Liu, H.: Feature selection for classification. Intelligent Data Analysis 1(4), 131–156 (1997)

    Article  Google Scholar 

  2. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  3. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: IEEE International Conference on Evolutionary Computation (CEC 1998), pp. 69–73 (1998)

    Google Scholar 

  4. Engelbrecht, A.P.: Computational intelligence: An introduction, 2nd edn. Wiley (2007)

    Google Scholar 

  5. Chuang, L.Y., Chang, H.W.: Improved binary PSO for feature selection using gene expression data. Computational Biology and Chemistry 32(29), 29–38 (2008)

    Article  MATH  Google Scholar 

  6. Lane, M., Xue, B., Liu, I., Zhang, M.: Particle swarm optimisation and statistical clustering for feature selection. In: Cranefield, S., Nayak, A. (eds.) AI 2013. LNCS, vol. 8272, pp. 214–220. Springer, Heidelberg (2013)

    Google Scholar 

  7. Cervante, L., Xue, B., Shang, L., Zhang, M.: A multi-objective feature selection approach based on binary pso and rough set theory. In: Middendorf, M., Blum, C. (eds.) EvoCOP 2013. LNCS, vol. 7832, pp. 25–36. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Bach, F.R., Jordan, M.I.: A probabilistic interpretation of canonical correlation analysis. Technical report (2005)

    Google Scholar 

  9. Pledger, S., Arnold, R.: Multivariate methods using mixtures: correspondence analysis, scaling and pattern detection. Computational Statistics and Data Analysis (2013), http://dx.doi.org/10.1016/j.csda.2013.05.013

  10. Matechou, E., Liu, I., Pledger, S., Arnold, R.: Biclustering models for ordinal data. Presentation at the NZ Statistical Assn. Annual Conference, University of Auckland (2011)

    Google Scholar 

  11. Kennedy, J., Eberhart, R.: A discrete binary version of the particle swarm algorithm. In: IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, vol. 5, pp. 4104–4108 (1997)

    Google Scholar 

  12. Xue, B., Zhang, M., Browne, W.: Particle swarm optimization for feature selection in classification: A multi-objective approach. IEEE Transactions on Cybernetics 43(6), 1656–1671 (2013)

    Article  Google Scholar 

  13. Zhu, Z.X., Ong, Y.S., Dash, M.: Wrapper-filter feature selection algorithm using a memetic framework. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 37(1), 70–76 (2007)

    Article  Google Scholar 

  14. Neshatian, K., Zhang, M., Andreae, P.: Genetic programming for feature ranking in classification problems. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 544–554. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Kanan, H.R., Faez, K.: An improved feature selection method based on ant colony optimization evaluated on face recognition system. Applied Mathematics and Computation 205(2), 716–725 (2008)

    Article  MATH  Google Scholar 

  16. He, X., Zhang, Q., Sun, N., Dong, Y.: Feature selection with discrete binary differential evolution. In: International Conference on Artificial Intelligence and Computational Intelligence (AICI 2009), vol. 4, pp. 327–330 (2009)

    Google Scholar 

  17. Al-Ani, A., Alsukker, A., Khushaba, R.N.: Feature subset selection using differential evolution and a wheel based search strategy. Swarm and Evolutionary Computation 9, 15–26 (2013)

    Article  Google Scholar 

  18. Xue, B., Zhang, M., Browne, W.: Novel initialisation and updating mechanisms in pso for feature selection in classification. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 428–438. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  19. Wang, X., Yang, J., Teng, X., Xia, W.: Feature selection based on rough sets and particle swarm optimization. Pattern Recognition Letters 28(4), 459–471 (2007)

    Article  Google Scholar 

  20. Fdhila, R., Hamdani, T., Alimi, A.: Distributed mopso with a new population subdivision technique for the feature selection. In: International Symposium on Computational Intelligence and Intelligent Informatics, pp. 81–86 (2011)

    Google Scholar 

  21. Yang, C.S., Chuang, L.Y., Li, J.C.: Chaotic maps in binary particle swarm optimization for feature selection. In: IEEE Conference on Soft Computing in Industrial Applications (SMCIA 2008), pp. 107–112 (2008)

    Google Scholar 

  22. Xue, B., Zhang, M., Browne, W.N.: Multi-objective particle swarm optimisation (pso) for feature selection. In: Genetic and Evolutionary Computation Conference (GECCO 2012), Philadelphia, PA, USA, pp. 81–88. ACM (2012)

    Google Scholar 

  23. Javani, M., Faez, K., Aghlmandi, D.: Clustering and feature selection via pso algorithm. In: International Symposium on Artificial Intelligence and Signal Processing, pp. 71–76 (2011)

    Google Scholar 

  24. Jakub Segen, J.: Feature selection and constructive inference. In: Proceedings of Seventh International Conference on Pattern Recognition, pp. 1344–1346 (1984)

    Google Scholar 

  25. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Assorted Conferences and Workshops, pp. 249–256 (1992)

    Google Scholar 

  26. Bache, K., Lichman, M.: UCI Machine Learning Repository (2013)

    Google Scholar 

  27. Gutlein, M., Frank, E., Hall, M., Karwath, A.: Large-scale attribute selection using wrappers. In: IEEE Symposium on Computational Intelligence and Data Mining (CIDM 2009), pp. 332–339 (2009)

    Google Scholar 

  28. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lane, M.C., Xue, B., Liu, I., Zhang, M. (2014). Gaussian Based Particle Swarm Optimisation and Statistical Clustering for Feature Selection. In: Blum, C., Ochoa, G. (eds) Evolutionary Computation in Combinatorial Optimisation. EvoCOP 2014. Lecture Notes in Computer Science, vol 8600. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44320-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44320-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44319-4

  • Online ISBN: 978-3-662-44320-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics