Abstract
Feature selection is an important but difficult task in classification, which aims to reduce the number of features and maintain or even increase the classification accuracy. This paper proposes a new particle swarm optimisation (PSO) algorithm using statistical clustering information to solve feature selection problems. Based on Gaussian distribution, a new updating mechanism is developed to allow the use of the clustering information during the evolutionary process of PSO based on which a new algorithm (GPSO) is developed. The proposed algorithm is examined and compared with two traditional algorithms and a PSO based algorithm which does not use clustering information on eight benchmark datasets of varying difficulty. The results show that GPSO can be successfully used for feature selection to reduce the number of features and achieve similar or even better classification performance than using all features. Meanwhile, it achieves better performance than the two traditional feature selection algorithms. It maintains the classification performance achieved by the standard PSO for feature selection algorithm, but significantly reduces the number of features and the computational cost.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dash, M., Liu, H.: Feature selection for classification. Intelligent Data Analysis 1(4), 131–156 (1997)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)
Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: IEEE International Conference on Evolutionary Computation (CEC 1998), pp. 69–73 (1998)
Engelbrecht, A.P.: Computational intelligence: An introduction, 2nd edn. Wiley (2007)
Chuang, L.Y., Chang, H.W.: Improved binary PSO for feature selection using gene expression data. Computational Biology and Chemistry 32(29), 29–38 (2008)
Lane, M., Xue, B., Liu, I., Zhang, M.: Particle swarm optimisation and statistical clustering for feature selection. In: Cranefield, S., Nayak, A. (eds.) AI 2013. LNCS, vol. 8272, pp. 214–220. Springer, Heidelberg (2013)
Cervante, L., Xue, B., Shang, L., Zhang, M.: A multi-objective feature selection approach based on binary pso and rough set theory. In: Middendorf, M., Blum, C. (eds.) EvoCOP 2013. LNCS, vol. 7832, pp. 25–36. Springer, Heidelberg (2013)
Bach, F.R., Jordan, M.I.: A probabilistic interpretation of canonical correlation analysis. Technical report (2005)
Pledger, S., Arnold, R.: Multivariate methods using mixtures: correspondence analysis, scaling and pattern detection. Computational Statistics and Data Analysis (2013), http://dx.doi.org/10.1016/j.csda.2013.05.013
Matechou, E., Liu, I., Pledger, S., Arnold, R.: Biclustering models for ordinal data. Presentation at the NZ Statistical Assn. Annual Conference, University of Auckland (2011)
Kennedy, J., Eberhart, R.: A discrete binary version of the particle swarm algorithm. In: IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, vol. 5, pp. 4104–4108 (1997)
Xue, B., Zhang, M., Browne, W.: Particle swarm optimization for feature selection in classification: A multi-objective approach. IEEE Transactions on Cybernetics 43(6), 1656–1671 (2013)
Zhu, Z.X., Ong, Y.S., Dash, M.: Wrapper-filter feature selection algorithm using a memetic framework. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 37(1), 70–76 (2007)
Neshatian, K., Zhang, M., Andreae, P.: Genetic programming for feature ranking in classification problems. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 544–554. Springer, Heidelberg (2008)
Kanan, H.R., Faez, K.: An improved feature selection method based on ant colony optimization evaluated on face recognition system. Applied Mathematics and Computation 205(2), 716–725 (2008)
He, X., Zhang, Q., Sun, N., Dong, Y.: Feature selection with discrete binary differential evolution. In: International Conference on Artificial Intelligence and Computational Intelligence (AICI 2009), vol. 4, pp. 327–330 (2009)
Al-Ani, A., Alsukker, A., Khushaba, R.N.: Feature subset selection using differential evolution and a wheel based search strategy. Swarm and Evolutionary Computation 9, 15–26 (2013)
Xue, B., Zhang, M., Browne, W.: Novel initialisation and updating mechanisms in pso for feature selection in classification. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 428–438. Springer, Heidelberg (2013)
Wang, X., Yang, J., Teng, X., Xia, W.: Feature selection based on rough sets and particle swarm optimization. Pattern Recognition Letters 28(4), 459–471 (2007)
Fdhila, R., Hamdani, T., Alimi, A.: Distributed mopso with a new population subdivision technique for the feature selection. In: International Symposium on Computational Intelligence and Intelligent Informatics, pp. 81–86 (2011)
Yang, C.S., Chuang, L.Y., Li, J.C.: Chaotic maps in binary particle swarm optimization for feature selection. In: IEEE Conference on Soft Computing in Industrial Applications (SMCIA 2008), pp. 107–112 (2008)
Xue, B., Zhang, M., Browne, W.N.: Multi-objective particle swarm optimisation (pso) for feature selection. In: Genetic and Evolutionary Computation Conference (GECCO 2012), Philadelphia, PA, USA, pp. 81–88. ACM (2012)
Javani, M., Faez, K., Aghlmandi, D.: Clustering and feature selection via pso algorithm. In: International Symposium on Artificial Intelligence and Signal Processing, pp. 71–76 (2011)
Jakub Segen, J.: Feature selection and constructive inference. In: Proceedings of Seventh International Conference on Pattern Recognition, pp. 1344–1346 (1984)
Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Assorted Conferences and Workshops, pp. 249–256 (1992)
Bache, K., Lichman, M.: UCI Machine Learning Repository (2013)
Gutlein, M., Frank, E., Hall, M., Karwath, A.: Large-scale attribute selection using wrappers. In: IEEE Symposium on Computational Intelligence and Data Mining (CIDM 2009), pp. 332–339 (2009)
Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lane, M.C., Xue, B., Liu, I., Zhang, M. (2014). Gaussian Based Particle Swarm Optimisation and Statistical Clustering for Feature Selection. In: Blum, C., Ochoa, G. (eds) Evolutionary Computation in Combinatorial Optimisation. EvoCOP 2014. Lecture Notes in Computer Science, vol 8600. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44320-0_12
Download citation
DOI: https://doi.org/10.1007/978-3-662-44320-0_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44319-4
Online ISBN: 978-3-662-44320-0
eBook Packages: Computer ScienceComputer Science (R0)