Abstract
The bisimilarity pseudometric based on the Kantorovich lifting is one of the most popular metrics for probabilistic processes proposed in the literature. However, its application in verification is limited to linear properties. We propose a generalization of this metric which allows to deal with a wider class of properties, such as those used in security and privacy. More precisely, we propose a family of metrics, parametrized on a notion of distance which depends on the property we want to verify. Furthermore, we show that the members of this family still characterize bisimilarity in terms of their kernel, and provide a bound on the corresponding metrics on traces. Finally, we study the case of a metric corresponding to differential privacy. We show that in this case it is possible to have a dual form, easier to compute, and we prove that the typical constructs of process algebra are non-expansive with respect to this metrics, thus paving the way to a modular approach to verification.
This work has been partially supported by the project ANR-12-IS02-001 PACE, the project ANR-11-IS02-0002 LOCALI, the INRIA Equipe Associée PRINCESS, the INRIA Large Scale Initiative CAPPRIS, and the EU grant 295261 MEALS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: Computing Behavioral Distances, Compositionally. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 74–85. Springer, Heidelberg (2013)
Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On-the-fly exact computation of bisimilarity distances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 1–15. Springer, Heidelberg (2013)
Barthe, G., Köpf, B., Olmedo, F., Béguelin, S.Z.: Probabilistic relational reasoning for differential privacy. In: Proc. of POPL. ACM (2012)
van Breugel, F., Worrell, J.B.: An algorithm for quantitative verification of probabilistic transition systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 336–350. Springer, Heidelberg (2001)
van Breugel, F., Worrell, J.B.: Towards quantitative verification of probabilistic transition systems. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 421–432. Springer, Heidelberg (2001)
van Breugel, F., Worrell, J.: A behavioural pseudometric for probabilistic transition systems. Theor. Comp. Sci. 331(1), 115–142 (2005)
van Breugel, F., Worrell, J.: Approximating and computing behavioural distances in probabilistic transition systems. Theor. Comp. Sci. 360(1-3), 373–385 (2006)
Cai, X., Gu, Y.: Measuring anonymity. In: Bao, F., Li, H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 183–194. Springer, Heidelberg (2009)
Chatterjee, K., de Alfaro, L., Majumdar, R., Raman, V.: Algorithms for Game Metrics. In: FSTTCS, vol. 2, pp. 107–118. Leibniz-Zentrum fuer Informatik (2008)
Chatzikokolakis, K., Andrés, M.E., Bordenabe, N.E., Palamidessi, C.: Broadening the scope of Differential Privacy using metrics. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 82–102. Springer, Heidelberg (2013)
Chatzikokolakis, K., Gebler, D., Palamidessi, C., Xu, L.: Generalized bisimulation metrics. Tech. rep., INRIA (2014)
Chen, D., van Breugel, F., Worrell, J.: On the complexity of computing probabilistic bisimilarity. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 437–451. Springer, Heidelberg (2012)
Comanici, G., Precup, D.: Basis function discovery using spectral clustering and bisimulation metrics. In: Vrancx, P., Knudson, M., Grześ, M. (eds.) ALA 2011. LNCS, vol. 7113, pp. 85–99. Springer, Heidelberg (2012)
D’Argenio, P.R., Gebler, D., Lee, M.D.: Axiomatizing Bisimulation Equivalences and Metrics from Probabilistic SOS Rules. In: Muscholl, A. (ed.) FOSSACS 2014. LNCS, vol. 8412, pp. 289–303. Springer, Heidelberg (2014)
Deng, Y., Du, W.: The kantorovich metric in computer science: A brief survey. ENTCS 253(3), 73–82 (2009)
Deng, Y., Palamidessi, C., Pang, J.: Weak probabilistic anonymity. In: Proc. of SecCo. ENTCS, vol. 180 (1), pp. 55–76. Elsevier (2007)
Desharnais, J., Jagadeesan, R., Gupta, V., Panangaden, P.: The metric analogue of weak bisimulation for probabilistic processes. In: Proc. of LICS, pp. 413–422. IEEE (2002)
Desharnais, J., Jagadeesan, R., Gupta, V., Panangaden, P.: Metrics for labelled Markov processes. Theor. Comp. Sci. 318(3), 323–354 (2004)
Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)
Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: Privacy via distributed noise generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006)
Lee, M.D., Gebler, D., D’Argenio, P.R.: Tree Rules in Probabilistic Transition System Specifications with Negative and Quantitative Premises. In: Proc. EXPRESS/SOS 2012. EPTCS, vol. 89, pp. 115–130 (2012)
Reed, J., Pierce, B.C.: Distance makes the types grow stronger: A calculus for differential privacy. In: Proc. of ICFP, pp. 157–168. ACM (2010)
Smith, A.: Efficient, differentially private point estimators. arXiv preprint arXiv:0809.4794 (2008)
Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics 5(2), 285–309 (1955)
Thorsley, D., Klavins, E.: Approximating stochastic biochemical processes with wasserstein pseudometrics. Systems Biology, IET 4(3), 193–211 (2010)
Tschantz, M.C., Kaynar, D., Datta, A.: Formal verification of differential privacy for interactive systems (extended abstract). ENTCS 276, 61–79 (2011)
Xu, L., Chatzikokolakis, K., Lin, H.: Metrics for differential privacy in concurrent systems. In: Ábrahám, E., Palamidessi, C. (eds.) FORTE 2014. LNCS, vol. 8461, pp. 199–215. Springer, Heidelberg (2014)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chatzikokolakis, K., Gebler, D., Palamidessi, C., Xu, L. (2014). Generalized Bisimulation Metrics. In: Baldan, P., Gorla, D. (eds) CONCUR 2014 – Concurrency Theory. CONCUR 2014. Lecture Notes in Computer Science, vol 8704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44584-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-662-44584-6_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44583-9
Online ISBN: 978-3-662-44584-6
eBook Packages: Computer ScienceComputer Science (R0)