Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Generalized Bisimulation Metrics

  • Conference paper
CONCUR 2014 – Concurrency Theory (CONCUR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8704))

Included in the following conference series:

  • 935 Accesses

Abstract

The bisimilarity pseudometric based on the Kantorovich lifting is one of the most popular metrics for probabilistic processes proposed in the literature. However, its application in verification is limited to linear properties. We propose a generalization of this metric which allows to deal with a wider class of properties, such as those used in security and privacy. More precisely, we propose a family of metrics, parametrized on a notion of distance which depends on the property we want to verify. Furthermore, we show that the members of this family still characterize bisimilarity in terms of their kernel, and provide a bound on the corresponding metrics on traces. Finally, we study the case of a metric corresponding to differential privacy. We show that in this case it is possible to have a dual form, easier to compute, and we prove that the typical constructs of process algebra are non-expansive with respect to this metrics, thus paving the way to a modular approach to verification.

This work has been partially supported by the project ANR-12-IS02-001 PACE, the project ANR-11-IS02-0002 LOCALI, the INRIA Equipe Associée PRINCESS, the INRIA Large Scale Initiative CAPPRIS, and the EU grant 295261 MEALS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: Computing Behavioral Distances, Compositionally. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 74–85. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On-the-fly exact computation of bisimilarity distances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 1–15. Springer, Heidelberg (2013)

    Google Scholar 

  3. Barthe, G., Köpf, B., Olmedo, F., Béguelin, S.Z.: Probabilistic relational reasoning for differential privacy. In: Proc. of POPL. ACM (2012)

    Google Scholar 

  4. van Breugel, F., Worrell, J.B.: An algorithm for quantitative verification of probabilistic transition systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 336–350. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. van Breugel, F., Worrell, J.B.: Towards quantitative verification of probabilistic transition systems. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 421–432. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. van Breugel, F., Worrell, J.: A behavioural pseudometric for probabilistic transition systems. Theor. Comp. Sci. 331(1), 115–142 (2005)

    Article  MATH  Google Scholar 

  7. van Breugel, F., Worrell, J.: Approximating and computing behavioural distances in probabilistic transition systems. Theor. Comp. Sci. 360(1-3), 373–385 (2006)

    Article  MATH  Google Scholar 

  8. Cai, X., Gu, Y.: Measuring anonymity. In: Bao, F., Li, H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 183–194. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Chatterjee, K., de Alfaro, L., Majumdar, R., Raman, V.: Algorithms for Game Metrics. In: FSTTCS, vol. 2, pp. 107–118. Leibniz-Zentrum fuer Informatik (2008)

    Google Scholar 

  10. Chatzikokolakis, K., Andrés, M.E., Bordenabe, N.E., Palamidessi, C.: Broadening the scope of Differential Privacy using metrics. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 82–102. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Chatzikokolakis, K., Gebler, D., Palamidessi, C., Xu, L.: Generalized bisimulation metrics. Tech. rep., INRIA (2014)

    Google Scholar 

  12. Chen, D., van Breugel, F., Worrell, J.: On the complexity of computing probabilistic bisimilarity. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 437–451. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Comanici, G., Precup, D.: Basis function discovery using spectral clustering and bisimulation metrics. In: Vrancx, P., Knudson, M., Grześ, M. (eds.) ALA 2011. LNCS, vol. 7113, pp. 85–99. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. D’Argenio, P.R., Gebler, D., Lee, M.D.: Axiomatizing Bisimulation Equivalences and Metrics from Probabilistic SOS Rules. In: Muscholl, A. (ed.) FOSSACS 2014. LNCS, vol. 8412, pp. 289–303. Springer, Heidelberg (2014)

    Google Scholar 

  15. Deng, Y., Du, W.: The kantorovich metric in computer science: A brief survey. ENTCS 253(3), 73–82 (2009)

    Google Scholar 

  16. Deng, Y., Palamidessi, C., Pang, J.: Weak probabilistic anonymity. In: Proc. of SecCo. ENTCS, vol. 180 (1), pp. 55–76. Elsevier (2007)

    Google Scholar 

  17. Desharnais, J., Jagadeesan, R., Gupta, V., Panangaden, P.: The metric analogue of weak bisimulation for probabilistic processes. In: Proc. of LICS, pp. 413–422. IEEE (2002)

    Google Scholar 

  18. Desharnais, J., Jagadeesan, R., Gupta, V., Panangaden, P.: Metrics for labelled Markov processes. Theor. Comp. Sci. 318(3), 323–354 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: Privacy via distributed noise generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Lee, M.D., Gebler, D., D’Argenio, P.R.: Tree Rules in Probabilistic Transition System Specifications with Negative and Quantitative Premises. In: Proc. EXPRESS/SOS 2012. EPTCS, vol. 89, pp. 115–130 (2012)

    Google Scholar 

  22. Reed, J., Pierce, B.C.: Distance makes the types grow stronger: A calculus for differential privacy. In: Proc. of ICFP, pp. 157–168. ACM (2010)

    Google Scholar 

  23. Smith, A.: Efficient, differentially private point estimators. arXiv preprint arXiv:0809.4794 (2008)

    Google Scholar 

  24. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics 5(2), 285–309 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  25. Thorsley, D., Klavins, E.: Approximating stochastic biochemical processes with wasserstein pseudometrics. Systems Biology, IET 4(3), 193–211 (2010)

    Article  Google Scholar 

  26. Tschantz, M.C., Kaynar, D., Datta, A.: Formal verification of differential privacy for interactive systems (extended abstract). ENTCS 276, 61–79 (2011)

    MathSciNet  Google Scholar 

  27. Xu, L., Chatzikokolakis, K., Lin, H.: Metrics for differential privacy in concurrent systems. In: Ábrahám, E., Palamidessi, C. (eds.) FORTE 2014. LNCS, vol. 8461, pp. 199–215. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chatzikokolakis, K., Gebler, D., Palamidessi, C., Xu, L. (2014). Generalized Bisimulation Metrics. In: Baldan, P., Gorla, D. (eds) CONCUR 2014 – Concurrency Theory. CONCUR 2014. Lecture Notes in Computer Science, vol 8704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44584-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44584-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44583-9

  • Online ISBN: 978-3-662-44584-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics