Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Batched Predecessor Problem in External Memory

  • Conference paper
Algorithms - ESA 2014 (ESA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8737))

Included in the following conference series:

Abstract

We give lower and upper bounds for the batched predecessor problem in external memory. We study tradeoffs between the I/O budget to preprocess a dictionary S versus the I/O requirement to find the predecessor in S of each element in a query set Q. For Q polynomially smaller than S, we give lower bounds in three external-memory models: the I/O comparison model, the I/O pointer-machine model, and the indexability model.

In the comparison I/O model, we show that the batched predecessor problem needs Ω(log B n) I/Os per query element (n = |S|) when the preprocessing is bounded by a polynomial. With exponential preprocessing, the problem can be solved faster, in Θ((log 2 n)/B) per element. We give the tradeoff that quantifies the minimum preprocessing required for a given searching cost.

In the pointer-machine model, we show that with O(n 4/3 − ε) preprocessing for any constant ε > 0, the optimal algorithm cannot perform asymptotically faster than a B-tree. In the indexability model, we exhibit the tradeoff between the redundancy r and access overhead α of the optimal indexing scheme, showing that to report all query answers in α(x/B) I/Os, log r = Ω((B/α 2)log (n/B)).

Our lower bounds have matching or nearly matching upper bounds.

This research was supported in part by NSF grants CCF 1114809, CCF 1114930, CCF 1217708, IIS 1247726, IIS 1247750, and IIS 1251137.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Afshani, P., Arge, L., Larsen, K.D.: Orthogonal range reporting: Query lower bounds, optimal structures in 3-d, and higher-dimensional improvements. In: 26th Annual Symposium on Computational Geometry (SoCG), pp. 240–246 (2010)

    Google Scholar 

  2. Afshani, P., Arge, L., Larsen, K.G.: Higher-dimensional orthogonal range reporting and rectangle stabbing in the pointer machine model. In: 28th Annual Symposium on Computational Geometry (SoCG), pp. 323–332 (2012)

    Google Scholar 

  3. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems. Commun. ACM 31, 1116–1127 (1988)

    Article  MathSciNet  Google Scholar 

  4. Arge, L.: The buffer tree: A technique for designing batched external data structures. Algorithmica 37(1), 1–24 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bollobás, B., Fernandez de la Vega, W.: The diameter of random regular graphs. Combinatorica 2(2), 125–134 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brodal, G.S., Fagerberg, R.: Lower bounds for external memory dictionaries. In: 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 546–554 (2003)

    Google Scholar 

  7. Buchsbaum, A.L., Goldwasser, M., Venkatasubramanian, S., Westbrook, J.R.: On external memory graph traversal. In: 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 859–860 (2000)

    Google Scholar 

  8. Dittrich, W., Hutchinson, D., Maheshwari, A.: Blocking in parallel multisearch problems (extended abstract). In: 10th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 98–107 (1998)

    Google Scholar 

  9. Goodrich, M.T., Tsay, J.J., Cheng, N.C., Vitter, J., Vengroff, D.E., Vitter, J.S.: External-memory computational geometry. In: 1993 IEEE 34th Annual Foundations of Computer Science (FOCS), pp. 714–723 (1993)

    Google Scholar 

  10. Hellerstein, J.M., Koutsoupias, E., Papadimitriou, C.H.: On the analysis of indexing schemes. In: 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), pp. 249–256 (1997)

    Google Scholar 

  11. Hellerstein, J.M., Koutsoupias, E., Miranker, D.P., Papadimitriou, C.H., Samoladas, V.: On a model of indexability and its bounds for range queries. J. ACM 49, 35–55 (2002)

    Article  MathSciNet  Google Scholar 

  12. Karpinski, M., Nekrich, Y.: Predecessor queries in constant time? In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 238–248. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Knudsen, M., Larsen, K.: I/O-complexity of comparison and permutation problems. Master’s thesis, DAIMI (November 1992)

    Google Scholar 

  14. Knuth, D.E.: The Art of Computer Programming: Sorting and Searching, vol. 3. Addison-Wesley (1973)

    Google Scholar 

  15. Pătraşcu, M., Thorup, M.: Time-space trade-offs for predecessor search. In: 38th Annual ACM Symposium on Theory of Computing (STOC), pp. 232–240 (2006)

    Google Scholar 

  16. Rödl, V.: On a packing and covering problem. European Journal of Combinatorics 6(1), 69–78 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  17. Samoladas, V., Miranker, D.P.: A lower bound theorem for indexing schemes and its application to multidimensional range queries. In: 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), pp. 44–51 (1998)

    Google Scholar 

  18. Subramanian, S., Ramaswamy, S.: The p-range tree: A new data structure for range searching in secondary memory. In: Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 378–387 (1995)

    Google Scholar 

  19. Tamassia, R., Vitter, J.S.: Optimal cooperative search in fractional cascaded data structures. In: Algorithmica, pp. 307–316 (1990)

    Google Scholar 

  20. Tao, T., Vu, V.H.: Additive Combinatorics. Cambridge University Press (2009)

    Google Scholar 

  21. Tarjan, R.E.: A class of algorithms which require nonlinear time to maintain disjoint sets. Journal of Computer and System Sciences 18(2), 110–127 (1979)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bender, M.A., Farach-Colton, M., Goswami, M., Medjedovic, D., Montes, P., Tsai, MT. (2014). The Batched Predecessor Problem in External Memory. In: Schulz, A.S., Wagner, D. (eds) Algorithms - ESA 2014. ESA 2014. Lecture Notes in Computer Science, vol 8737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44777-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44777-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44776-5

  • Online ISBN: 978-3-662-44777-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics