Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Reversible and Irreversible Computations of Deterministic Finite-State Devices

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2015 (MFCS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9234))

Abstract

Finite-state devices with a read-only input tape that may be equipped with further resources as queues or pushdown stores are considered towards their ability to perform reversible computations. Some aspects of the notion of logical reversibility are addressed. We present some selected results on the decidability, uniqueness, and size of minimal reversible deterministic finite automata. The relations and properties of reversible automata that are equipped with storages are discussed, where we exemplarily stick with the storage types queue and pushdown store. In particular, the computational capacities, decidability problems, and closure properties are the main topics covered, and we draw attention to the overall picture and some of the main ideas involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amoroso, S., Patt, Y.N.: Decision procedures for surjectivity and injectivity of parallel maps for tesselation structures. J. Comput. Syst. Sci. 6, 448–464 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angluin, D.: Inference of reversible languages. J. ACM 29, 741–765 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Axelsen, H.B.: Reversible multi-head finite automata characterize reversible logarithmic space. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 95–105. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Axelsen, H.B., Glück, R.: A simple and efficient universal reversible turing machine. In: Dediu, A.-H., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 117–128. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Axelsen, H.B., Jakobi, S., Kutrib, M., Malcher, A.: A hierarchy of fast reversible turing machines. In: Krivine, J., Stefani, J.B. (eds.) Reversible Computation (RC 2015). LNCS, vol. 9138, pp. 29–44. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  6. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)

    Article  MATH  Google Scholar 

  7. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput. 18, 766–776 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brandenburg, F.J.: Intersections of some families of languages. In: Kott, L. (ed.) International Colloquium on Automata, Languages and Programming (ICALP 1986). LNCS, vol. 226, pp. 60–68. Springer, Heidelberg (1986)

    Chapter  Google Scholar 

  9. Buhrman, H., Tromp, J., Vitányi, P.M.B.: Time and space bounds for reversible simulation. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 1017–1027. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Cherubini, A., Citrini, C., Crespi-Reghizzi, S., Mandrioli, D.: QRT FIFO automata, breadth-first grammars and their relations. Theoret. Comput. Sci. 85, 171–203 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. García, P., de Parga, M.V., López, D.: On the efficient construction of quasi-reversible automata for reversible languages. Inform. Process. Lett. 107, 13–17 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Reading (1978)

    MATH  Google Scholar 

  13. Héam, P.C.: A lower bound for reversible automata. RAIRO Inform. Théor. 34, 331–341 (2000)

    Article  MATH  Google Scholar 

  14. Holzer, M., Jakobi, S., Kutrib, M.: Minimal reversible deterministic finite automata. In: Potapov, I. (ed.) Developments in Language Theory (DLT 2015). LNCS, Springer (to appear 2015)

    Google Scholar 

  15. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Boston (1979)

    MATH  Google Scholar 

  16. Kari, J.: Reversibility and surjectivity problems of cellular automata. J. Comput. Syst. Sci. 48, 149–182 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kari, J.: Reversible cellular automata. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 57–68. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Kobayashi, S., Yokomori, T.: Learning approximately regular languages with reversible languages. Theoret. Comput. Sci. 174, 251–257 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Foundations of Computer Science (FOCS 1997), pp. 66–75. IEEE Computer Society (1997)

    Google Scholar 

  20. Kutrib, M.: Aspects of reversibility for classical automata. In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Gruska Festschrift. LNCS, vol. 8808, pp. 83–98. Springer, Heidelberg (2014)

    Google Scholar 

  21. Kutrib, M., Malcher, A.: Fast reversible language recognition using cellular automata. Inform. Comput. 206, 1142–1151 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kutrib, M., Malcher, A.: Real-time reversible iterative arrays. Theoret. Comput. Sci. 411, 812–822 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kutrib, M., Malcher, A.: Reversible pushdown automata. J. Comput. Syst. Sci. 78, 1814–1827 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kutrib, M., Malcher, A.: One-way reversible multi-head finite automata. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 14–28. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Kutrib, M., Malcher, A., Wendlandt, M.: Real-time reversible one-way cellular automata. In: Isokawa, T., Imai, K., Matsui, N., Peper, F., Umeo, H. (eds.) AUTOMATA 2014. LNCS, vol. 8996, pp. 56–69. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  26. Kutrib, M., Malcher, A., Wendlandt, M.: Reversible queue automata. In: Bensch, S., Freund, R., Otto, F. (eds.) Non-Classical Models of Automata and Applications (NCMA 2014), vol. 304, pp. 163–178. Austrian Computer Society, Vienna (2014). www.books@ocg.at

    Google Scholar 

  27. Kutrib, M., Wendlandt, M.: Reversible limited automata. In: Machines, Computations, and Universality (MCU 2015). LNCS, Springer (to appear, 2015)

    Google Scholar 

  28. Kutrib, M., Worsch, T.: Degrees of reversibility for DFA and DPDA. In: Yamashita, S., Minato, S. (eds.) RC 2014. LNCS, vol. 8507, pp. 40–53. Springer, Heidelberg (2014)

    Google Scholar 

  29. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space. J. Comput. Syst. Sci. 60, 354–367 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, M., Longpré, L., Vitányi, P.M.B.: The power of the queue. SIAM J. Comput. 21, 697–712 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lombardy, S.: On the construction of reversible automata for reversible languages. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, p. 170. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  33. Morita, K.: Reversible simulation of one-dimensional irreversible cellular automata. Theoret. Comput. Sci. 148, 157–163 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Morita, K.: Reversible computing and cellular automata - a survey. Theoret. Comput. Sci. 395, 101–131 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Morita, K.: Two-way reversible multi-head finite automata. Fund. Inform. 110, 241–254 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Pin, J.E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol. 583, pp. 401–416. Springer, Heidelberg (1992)

    Google Scholar 

  37. Vollmar, R.: Über einen Automaten mit Pufferspeicherung. Computing 5, 57–70 (1970)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kutrib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kutrib, M. (2015). Reversible and Irreversible Computations of Deterministic Finite-State Devices. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48057-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48057-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48056-4

  • Online ISBN: 978-3-662-48057-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics