Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Sea Ice Growth, Melt, and Modeling: A Survey

  • Chapter
The Freshwater Budget of the Arctic Ocean

Part of the book series: NATO Science Series ((ASEN2,volume 70))

Abstract

The freshwater budget of the Arctic as a whole can be stated quite simply as: inflows minus outflows equals net change within the region. If the region is defined to include all ice-covered seas, then the growth and melt of sea ice is an internal term that has no net effect. This is illustrated schematically for the ice-ocean system in Figure 1 where net ice growth in the Arctic Ocean is balanced by net ice melt in the Greenland-IcelandNorwegian (GIN) Seas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aagaard, K. and Carmack, E.C. (1989) The role of sea ice and other freshwater in the Arctic circulation, J. Geophys. Res. 94, 14485–14498.

    Article  Google Scholar 

  2. Wijffels, SE., Schmitt, R.W., Bryden, H.L., and Stigebrandt, A. (1992) Transport of freshwater by the oceans,J. Phys. Oceanogr 22, 155–162.

    Article  Google Scholar 

  3. Thorndike, A.S., Rotbrock, DA., Maykut, GA., and Colony, R. (1975) The thickness distribution of sea iceJ.,Geophys. Res. 80, 4501–4513.

    Article  Google Scholar 

  4. Hibler, W.D. 111(1980) Modeling a variable thickness sea ice cover,Mon. Wea. Rev. 108, 1943–1973.

    Article  Google Scholar 

  5. Steele, M., Thomas, D., Rothrock, D., and Martin, S. (1996) A simple model study of the Arctic Ocean freshwater balance, 1979–1985,J Geophys. Res., 101,20833–20848.

    Article  Google Scholar 

  6. McLaren, A.S., Bourke, R.H., Walsh, JE., and Weaver, R.L. (1994) Variability in sea-ice thickness overthe North Pole from 1958 to 1992, in,The Polar Oceans and Their Role in Shaping the Global Environmentedited by O.M. Johannessen et al., pp.363–371, American Geophysical Union.

    Chapter  Google Scholar 

  7. Koemer, R.M. (1973) The mass balance of the sea ice of the Arctic Ocean J. Glaciol., 12, 173–185.

    Google Scholar 

  8. Vinje, T., Nordlund, N., and Kvambekk, A. (1998) Monitoring ice thickness in Fram Strait. J. Geophys. Res., 103, 10437–10449.

    Article  Google Scholar 

  9. Scbwerdtfeger, P. (1963) The thermal properties of sea ice. J. Glaciol., 4, 789–807.

    Google Scholar 

  10. Untersteiner, N. (1961) On the mass and heat budget of Arctic sea ice, Arch. MeteoroL Geophys. Biokumatol., A, 12, 151–182.

    Article  Google Scholar 

  11. Ono, N. (1967) Specific heat and heat of fusion of sea ice, in Physics of Snow and Ice, Volume I, edited by H. Oura, pp.599–610, Inst. of Low Temperature Sci., Hokkaido, Japan.

    Google Scholar 

  12. Bitz, C.M. and Lipscomb, W.R. (1999) An energy-conserving thermodynamic sea ice model,J. Geophys. Res.in review.

    Google Scholar 

  13. Maykut, G.A. and Untersteiner, N. (1971) Some results from a time-dependent, thermodynamic model of sea ice,].,Geophys. Res. 76, 1550–1575.

    Article  Google Scholar 

  14. Maykut, G.A. (1986) The surface heat and mass balance, in,The Geophysics Of Sea Iceedited by N. Untersteiner, pp.395–463, Plenum.

    Google Scholar 

  15. Stefan, J. (1891) Über die Theorie der Eisbildung, insbesondere fiber die Eisbildung im Polarmeere.,Ann. Physik, 3rd Ser 42, 269–286.

    Article  Google Scholar 

  16. Semtner, A.J.Jr. (1976) A model for the thermodynamic growth of sea ice in numerical investigations of climate.,JPhys. Oceanogr. 6, 379–389.

    Article  Google Scholar 

  17. Gabison, R., (1987) A Thermodynamic model of the formation, growth, and decay of first-year sea ice. J. Glaciol., 33(113), 105–119.

    Google Scholar 

  18. Flato, G.M. and Brown, R.D. (1996) Variability and climate sensitivity of landfast Arctic sea ice,. J. Geophys. Res. 101, 25767–25777.

    Article  Google Scholar 

  19. Lindsay, R.W. (1998) Temporal variability of the energy balance of thick Arctic pack,ice,J. Climate 11, 313–333.

    Article  Google Scholar 

  20. Maykut, G.A. (1982) Large-scale heat exchange and ice production in the central Arctic,J. Geophys. Res. 87, 7971–7984.

    Article  Google Scholar 

  21. Björk, G. (1992) On the response of the equilibrium thickness distribution of sea ice to ice export, mechanical deformation, and thermal forcing with application to the Arctic Ocean.,J. Geophys. Res., 97(C7), 11287–11298.

    Article  Google Scholar 

  22. Scbramm, J.L., Holland, M.M., and Curry, J.A. (1997) Modeling the thennodynamics of a sea ice thickness distribution 1. Sensitivity to ice thickness resolution. J. Geophys. Res., 102, 23079–23091.

    Article  Google Scholar 

  23. Holland, M.M., Curry, J.A., and Schramm, J L. (1997) Modeling the thermodynamics of a sea ice thickness distribution 2. Sea ice/ocean interactions, J. Geophys. Res., 102, 23093–23107.

    Article  Google Scholar 

  24. Ebert, E.E. and Curry, J.A. (1993) An intermediate one-dimensional thermodynamic sea ice model for investigating ice-atmosphere interactions. J. Geophys. Res., 98, 10085–10109.

    Article  Google Scholar 

  25. Maykut, G.A. and Perovich, D.K. (1987) The role of shortwave radiation in the summer decay of a sea ice cover,J. Geophys. Res. 92, 7032–7044.

    Article  Google Scholar 

  26. Josberger, E.G. and Martin, S. (1981) A laboratory and theoretical study of the boundary layer adjacent to a vertical melting ice wall in saltwater,J. Fluid Mech. 111, 439–473.

    Article  Google Scholar 

  27. Steele, M. (1992) Sea ice melting and floe geometry in a simple ice-ocean model,J. Geophys. Res. 97, 17729–17738.

    Article  Google Scholar 

  28. Mellor, G.L. and Kantha, L. (1989) An ice-ocean coupled model,J. Geophys. Res. 94, 10937–10954.

    Article  Google Scholar 

  29. Harvey, L.D.D. (1990) Testing alternative parameterization of lateral melting and upward basal heat flux in a thermodynamic sea ice model,J. Geophys. Res. 95, 7359–7365.

    Article  Google Scholar 

  30. Ebert, E.E., Scbramm, J.L., and Curry, J.A. (1995) Disposition of solar radiation in sea ice and the upper ocean,J. Geophys Res. 100, 15965–15975.

    Article  Google Scholar 

  31. MePhee, M.G. and Untersteiner, N. (1982) Using sea ice to measure vertical beat flux in the ocean,J. Geophys. Res. 87, 2071–2074.

    Article  Google Scholar 

  32. Wettlaufer, J.S., (1991) Heat flux at the ice-ocean interface,J. Geophys. Res. 96, 7215–7236.

    Article  Google Scholar 

  33. Bitz, C.M., Battisti, D.S., Moritz, R.E., and Beesley, J.A. (1996) Low frequency variability in the Arctic atmosphere, sea ice, and upper ocean climate system.,J. Climate 9(2), 394–408.

    Article  Google Scholar 

  34. Ledley, T.S. (1991) Snow on sea ice: competing effects in shaping climate,. J. Geophys. Res. 96, 17195–17208.

    Article  Google Scholar 

  35. Semtner, A.J.Jr. (1984) On modelling the seasonal thermodynamic cycle of sea ice in studies of climatic change,Climatic Change 6, 27–37.

    Article  Google Scholar 

  36. Curry, J.A, Schramm, J L, and Ebert, E.E. (1995) Sea ice-albedo climate feedback mechanism.,J. Climate 8, 240–147.

    Article  Google Scholar 

  37. Randall, D., Curry, J., Battisti, D., Flato, G., Gr unbine, R., Hilkinen, S., Martinson, D., Preller, R., Walsh, J., and Weatherly, J. (1998) Status and outlook for large-scale modeling of atmosphere-ice-ocean interactions in the Arctic.,Bull Am. MeteoroL Soc. 79, 197–219.

    Article  Google Scholar 

  38. Bitz, C.M. (1997) A model study of natural variability in the Arctic climate, PhD thesis, Univ. of Wash., Seattle, WA, USA

    Google Scholar 

  39. Bourke, R.H. and Garrett, R.P (1987) Sea ice thickness distribution in the Arctic Ocean, Cold Reg.,Sci. Technol 13, 259–280.

    Google Scholar 

  40. Keigwin, L.D. and Johnson, G.L. (1992) Using a nuclear submarine for Arctic research,EOS,Trans. Amer Geophys. Union 73(19).

    Google Scholar 

  41. Martin, S. and Cavalieri, D.J. (1989) Contributions of the Siberian shelf polynyas to the Arctic Ocean intermediate and deep water,J. Geophys. Res. 94, 12725–12738.

    Article  Google Scholar 

  42. Cavalieri, D.J. and Martin, S. (1994) The contribution of Alaskan, Siberian, and Canadian coastal polynyas to the cold halocline layer of the Arctic Ocean, J. Geophys. Res., 99, 18343–18362.

    Article  Google Scholar 

  43. Bauch, D., Schlosser, P, and Fairbanks, R.G. (1995) Freshwater balance and the sources of deep and bottom waters in the Arctic Ocean inferred from the distribution of H2 18O,Prog. Oceanog. 35,53–80.

    Article  Google Scholar 

  44. Colony, R. and Thomdike, A.S. (1984) An estimate of the mean field of Arctic sea ice motion, J. Geophys. Res., 89, 10623–10629.

    Article  Google Scholar 

  45. Jones, E.P, Nelson, D.M., and Treguer, P (1990) Chemical oceanography, in,Polar Oceanography,Part B: Chemistry,Biology,and Geology 407–476, Academic Press.

    Google Scholar 

  46. Wallace, D.W.R., Seblosser, P., Krysell, M., and Bo--m’sch, G. (1992) Halocarbon ratio and tritium/3He dating of water masses in the Nansen Basin, Arctic Ocean,Deep-Sea Res. 39(S2), S435–S458.

    Article  Google Scholar 

  47. Serreze, MC. and Barry, R.G. (1988) Synoptic activity in the Arctic basin, 1979–85,J.Climate 1, 1276–1295.

    Article  Google Scholar 

  48. Aagaard, K., Foldvik, A., and Hillman, S.R. (1987) The West Spitsbergen Current: Disposition and water mass transformation,J. Geophys. Res. 92, 3778–3784.

    Article  Google Scholar 

  49. Ekwurzel, B. (1998) Circulation and mean residence times in the Arctic Ocean derived from tritium, helium, and oxygen-18 tracers, PhD thesis, Columbia Univ., New York, NY, USA.

    Google Scholar 

  50. Melling, H. and R.M. Moore (1995) Modification of halocline source waters during freezing on the Beaufort Sea shelf: evidence from oxygen isotopes and dissolved nutrients,Cont. Shelf Res. 15, 89–113.

    Article  Google Scholar 

  51. Macdonald, R.W., Paton, D.W., Cannack, E.C., and Omstedt, A. (1995) The freshwater budget and under-ice spreading of Mackenzie River water in the Canadian Beaufort Sea based on salinity and 180,160 measurements in water and ice,J. Geophys. Res. 100, 895–919.

    Article  Google Scholar 

  52. Hibler, W.D. 111(1979) A dynamic thermodynamic sea ice model,J. Phys. Oceanogr 9, 815–846.

    Article  Google Scholar 

  53. Walsh, J.E., Hibler, W.D. III, and Ross, B. (1985) Numerical simulation of northern hemisphere sea ice variability, 1951–1980,J. Geophys. Res. 90, 4847–4865.

    Article  Google Scholar 

  54. Hlkkinen, S and Mellor, G.L. (1992) Modeling the seasonal variability of a coupled Arctic ice-ocean system,J. Geophys. Res. 97, 20285–20304.

    Article  Google Scholar 

  55. Flato, G.M. and Hibler, W.D. III, (1992) Modeling pack ice as a cavitating fluid,J. Phys. Oceanogr 22, 626–651.

    Article  Google Scholar 

  56. Chapman, W.L., Welch, W.J., Bowman, K.P., Sacks, J., and Walsh, J.E. (1994) Arctic sea ice variability: model sensitivities and a multidecadal simulation,J. Geophys. Res. 99, 919–935.

    Article  Google Scholar 

  57. Thomas, D., Martin, S., Rothrock, D., and Steele, M. (1996) Assimilating satellite concentration data into an Arctic sea ice mass balance model, 1979–1985,J. Geophys. Res. 101, 20849–20868.

    Article  Google Scholar 

  58. Fichefet, T. and Morales Maqueda, M.A. (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics,J. Geophys. Res. 102, 12609–12646.

    Article  Google Scholar 

  59. Zhang, J., Hibler, W., Steele, M., and Rothrock, O. (1998) Arctic ice-ocean modeling with and without climate restoring,J. Phys. Oceanogr 28, 191–217.

    Article  Google Scholar 

  60. Hilmer, M., Harder, M., and Lemke, P. (1998) Sea ice transport: a highly variable link between Arctic and North Atlantic,Geophys. Res. Lett 25, 3359–3362.

    Article  Google Scholar 

  61. Lemke, P., Owens, W.B., and Hibler, W.D. III, (1990) A coupled sea ice-mixed layer-pycnocline model for the Weddell Sea,J. Geophys. Res. 95, 9513–9525.

    Article  Google Scholar 

  62. Owens, W.B. and Lemke, P. (1990) Sensitivity studies with a sea ice-mixed layer-pycnocline model in the Weddell Sea,J. Geophys. Res. 95, 9527–9538.

    Article  Google Scholar 

  63. Södssel, A., Lemke, P, and Owens, W.B. (1990) Coupled sea ice-mixed layer simulations for the southern ocean,J. Geophys. Res. 95, 9539–9555.

    Article  Google Scholar 

  64. Stössel, A., Oberhuber, J.M., and Maler-Reimer, l.l.(1996) On the representation of sea ice in global ocean general circulation models,J. Geophys. Res. 101,18193–18212.

    Article  Google Scholar 

  65. Harder, M., Lenake, P., and Hilmer, M. (1998) Simulation of sea ice transport through Fram Strait: natural variability and sensitivity to forcing,J. Geophys. Res. 103, 5595–5606.

    Article  Google Scholar 

  66. Flato, G.M. and Hibler, W.D. l.l.l.(1991) An initial numerical investigation of the extent of sea-ice ridging,Ann. Glaciol 15, 31–36.

    Google Scholar 

  67. Zhang, J. and Hibler, W.D. 111(1997) On an efficient numerical method for modeling sea ice dynamics,J. Geophys. Res. 102, 8691–8702.

    Article  Google Scholar 

  68. Parlanson, C.L. and Washington, W.M. (1979) A large-scale numerical model of sea ice,J. Geophys. Res. 84, 311–337.

    Article  Google Scholar 

  69. Kreyscber, M., Harder, M, and Lenake, P (1997) First results of the Sea Ice Model Intercomparison Project (SIMIP),Ann. Glaciol 25, 8-I1.

    Google Scholar 

  70. Dickson, R.R., Meineke, J., Malmberg, S.-A., and Lee, A.J. (1988) The “Great Salinity Anomaly” in the Northern North Atlantic 1968–1982,Prog. Oceanog 20, 103–151.

    Article  Google Scholar 

  71. Tremblay, L.-B. and Mysak, L.A. (1998) On the origin and evolution of sea-ice anomalies in the Beaufort-Chukchi Sea,Climate Dynamics 14,451–460.

    Article  Google Scholar 

  72. Flato, G.M. (1995) Spatial and temporal variability of Arctic ice thickness,Ann. Glaciol. 21, 323–329.

    Google Scholar 

  73. flato, G.M. and Hibler, W.D. 111(1995) Ridging and strength in modeling the thickness distribution of Arctic sea ice,J. Geophys. Res. 100, 18611–18626.

    Article  Google Scholar 

  74. Martin, S. and Munoz, E.A. (1997) Properties of the Arctic 2-meter air temperature field for 1979 to the present derived from a new gridded dataset.,J. Climate 10, 1428–1440.

    Article  Google Scholar 

  75. Hibler, W.D. 111(1984) The role of sea ice dynamics in modeling CO2 increases.,Climate Processes and Climate Sensitivity,Geophysical Monograph 29, Am. Geophys. Union238–253.

    Google Scholar 

  76. Flato, G.M. (1996) The role of dynamics in warming sensitivity of Arctic sea ice models,Workshop on Polar Processes in Global Climate,Am. Meteorol. Soc.113–114.

    Google Scholar 

  77. Arbetter, T.E., Curry, J.A., Holland, M.M. and Maslanik, J.A. (1997) Response of sea-ice models to perturbations in surface heat flux,Ann. Glaciol 25, 193–197.

    Google Scholar 

  78. Omstedt, A, Carmack, E.C., and Macdonald, R.W. (1994) Modeling the seasonal cycle of salinity in the Mackenzie shelf/estuary,J. Geophys. Res. 99, 10011–10021.

    Article  Google Scholar 

  79. Fischer, H. and Leinke, P. (1994) On the required accuracy of atmospheric forcing fields for driving dynamic-thermodynamic sea ice models, in The Polar Oceans and Their Role in Shaping the Global Environment, Geophys.Monogr Ser, 85, 373–381, AGU, Washington, D.C.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Steele, M., Flato, G.M. (2000). Sea Ice Growth, Melt, and Modeling: A Survey. In: Lewis, E.L., Jones, E.P., Lemke, P., Prowse, T.D., Wadhams, P. (eds) The Freshwater Budget of the Arctic Ocean. NATO Science Series, vol 70. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4132-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4132-1_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6440-5

  • Online ISBN: 978-94-011-4132-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics