Summary
We propose a new criterion for defining partial charges on atoms in molecules, namely that physical observables calculated from those partial charges should be as accurate as possible. We also propose a method to obtain such charges based on a mapping from approximate electronic wave functions. The method is illustrated by parameterizing two new charge models called AM1-CM1A and PM3-CM1P, based on experimental dipole moments and, respectively, on AM1 and PM3 semiempirical electronic wave functions. These charge models yield rms errors of 0.30 and 0.26 D, respectively, in the dipole moments of a set of 195 neutral molecules consisting of 103 molecules containing H, C, N and O, covering variations of multiple common organic functional groups, 68 fluorides, chlorides, bromides and iodides, 15 compounds containing H, C, Si or S, and 9 compounds containing C-S-O or C-N-O linkages. In addition, partial charges computed with this method agree extremely well with high-level ab initio calculations for both neutral compounds and ions. The CM1 charge models provide a more accurate point charge representation of the dipole moment than provided by most previously available partial charges, and they are far less expensive to compute.
Similar content being viewed by others
References
Straatsma, T.P. and McCammon, J.A., Annu. Rev. Phys. Chem., 43 (1992) 407.
For recent comparisons of different methods of charge analysis see: Bachrach, S.M., In Lipkowitz, K.B. and Bovd, D.B. (Eds.) Reviews in Computational Chemistry, Vol. 5, VCH Publishers, New York, NY, 1993, pp. 171–227.
Wiberg, K.B. and Rablen, P.R., J. Comput. Chem., 14 (1993) 1504.
Coppens, P., Annu. Rev. Phys. Chem., 43 (1992) 663.
Mulliken, R.S., J. Chem. Phys., 3 (1935) 564.
Mulliken, R.S., J. Chem. Phys., 23 (1955) 1833.
Mulliken, R.S., J. Chem. Phys., 36 (1962) 3428.
Bader, R.W.F., Acc. Chem. Res., 18 (1985) 9.
Bader, R.W.F., Atoms in Molecules. A Quantum Theory, Clarendon Press, Oxford, 1990.
Warshel, A., Acc. Chem. Res., 14 (1981) 284.
Price, S.L. and Stone, A.J., J. Chem. Phys., 86 (1987) 2859.
Shi, X. and Bartell, L.S., J. Am. Chem. Soc., 92 (1988) 5667.
Hall, D. and Williams, D.E., Acta Crystallogr., A31 (1975) 56.
Momany, F.A., J. Phys. Chem., 82 (1978) 592.
Kollman, P.A., J. Am. Chem. Soc., 99 (1977) 4875.
Kollman, P.A., J. Am. Chem. Soc., 100 (1978) 2974.
Smit, P.H., Derissen, J.L. and Van Duijneveldt, F.B., Mol. Phys., 37 (1979) 521.
Cox, S.R. and Williams, D.E., J. Comput. Chem., 2 (1981) 304.
Williams, D.E. and Yan, M.J., Adv. Atomic Mol. Phys., 23 (1988) 87.
Williams, D.E., J. Comput. Chem., 9 (1988) 745.
Williams, D.E., Biopolymers, 29 (1990) 1367.
Williams, D.E., In Lipkowitz, K.B. and Bovd, D.B. (Eds.) Reviews in Computational Chemistry, Vol. 2, VCH Publishers, New York, NY, 1991, pp. 219–271.
Chirlian, L.E. and Francl, M.M., J. Comput. Chem., 8 (1987) 894.
Breneman, C.M. and Wiberg, K.B., J. Comput. Chem., 11 (1990) 361.
Singh, U.C. and Kollman, P.A., J. Comput. Chem., 5 (1984) 129.
Besler, B.H., Merz Jr., K.M. and Kollman, P.A., J. Comput. Chem., 11 (1990) 431.
Merz, K.M., J. Comput. Chem., 11 (1992) 749.
Reed, A.E., Weinstock, R.B. and Weinhold, F., J. Chem. Phys., 83 (1985) 735.
Reed, A.E., Weinhold, F. and Curtiss, L.A., Chem. Rev., 88 (1988) 899.
Montagnini, R. and Tomasi, J., J. Mol. Struct. (THEOCHEM), 279 (1993) 131.
Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. and Stewart, J.J.P., J. Am. Chem. Soc., 107 (1985) 3902.
Stewart, J.J.P., J. Comput. Chem., 10 (1989) 209.
Stewart, J.J.P., J. Comput. Chem., 10 (1989) 221.
Møller, C. and Plesset, M.S., Phys. Rev., 46 (1934) 618.
Pople, J.A., Seeger, R. and Krishnan, R., Int. J. Quantum Chem. Symp., 11 (1977) 49.
Krishnan, R. and Pople, J.A., Int. J. Quantum Chem., 14 (1978) 91.
Krishnan, R., J. Chem. Phys., 72 (1980) 4244.
Hehre, W.J., Radom, L., Schleyer, P.v.R. and Pople, J.A., Ab Initio Molecular Orbital Theory, Wiley, New York, NY, 1986.
Hehre, W.J., Ditchfield, R. and Pople, J.A., J. Chem. Phys., 56 (1972) 2257.
Dunning Jr., T.H., J. Chem. Phys., 90 (1989) 1007.
Woon, D.E. and Dunning Jr., T.H., J. Chem. Phys., 98 (1993) 1358.
X/Y denotes electronic structure level X with basis set Y. HF denotes Hartree-Fock, MP2 denotes second-order Møller-Plesset perturbation theory (Ref. 21a), and cc-pVDZ (Ref. 23) denotes a basis set.
X/Y//Z/W denotes that the wave function and energy are calculated by method X with basis set Y at a geometry optimized by method Z with basis set W. X/Y denotes X/Y//X/Y.
Pople, J.A. and Segal, G.A., J. Chem. Phys., 43 (1965) S129.
Dewar, M.J.S. and Thiel, W., J. Am. Chem. Soc., 99 (1977) 4899.
Armstrong, D.R., Perkins, P.G. and Stewart, J.J.P., J. Chem. Soc., Dalton Trans., (1973) 838.
Stark, B., In Hellwege, K.-H. and Hellwege, A.M. (Eds.) Molecular Constants from Microwave Spectroscopy, Landolt-Börnstein, New Series, Group II, Vol. 4, Springer-Verlag, Berlin, 1967, pp. 136–151.
Demaison, J., Hütner, W., Stark, B., Buck, I., Tischer, R. and Winnewisser, M., In Hellwege, K.-H. (Ed.) Molecular Constants, Landolt-Börnstein, New Series, Group II, Vol. 6, Springer-Verlag, Berlin, 1974, pp. 261–304.
Demaison, J., Hütner, W. and Tiemann, E., In Hellwege, K.-H. and Hellwege, A.M. (Eds.) Molecular Constants, Landolt-Börnstein, New Series, Group II, Vol. 14a, Springer-Verlag, Berlin, 1982, pp. 584–643.
Nelson, R.D., Lide, D.R. and Maryott, A.A., Natl. Stand., Ref. Data Ser., United States National Bureau of Standards, NSRDS-NBS 10, 1967.
Hocking, W.H., Z. Naturforsch., 31A (1976) 1113.
Caminati, W., J. Mol. Spectrosc., 86 (1981) 193.
Caminati, W. and Corbelli, G., J. Mol. Spectrosc., 90 (1981) 572.
Frisch, M.J., Trucks, G.W., Head-Gordon, M., Gill, P.M.W., Wong, M.W., Foresman, J.B., Johnson, B.G., Schlegel, H.B., Robb, M.A., Repolgle, E.S., Gomperts, R., Andres, J.L., Raghavachari, K., Binkley, J.S., Stewart, J.J.P. and Pople, J.A., GAUSSIAN92, Gaussian, Inc., Pittsburgh, PA, 1992.
Cramer, C.J., Lynch, G.C., Hawkins, G.D. and Truhlar, D.G., QCPE Bull., 13 (1993) 78. This new code will be made available as AMSOL, version 4.5.
Marquardt, D.W., J. Soc. Indian Appl. Math., 11 (1963) 431.
Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T., Numerical Recipes, Cambridge University Press, Cambridge, 1989.
Jorgensen, W.L., Chandresekhar, J., Madura, J.D., Impey, R.W. and Klein, M.L., J. Chem. Phys., 79 (1983) 926.
Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta Jr., S. and Weiner, P., J. Am. Chem. Soc., 106 (1984) 765.
Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A., J. Comput. Chem., 7 (1986) 230.
Jorgensen, W.L. and Tirado-Rives, J., J. Am. Chem. Soc., 110 (1988) 1657.
Cramer, C.J. and Truhlar, D.G., J. Comput.-Aided Mol. Design, 6 (1992) 629.
Cramer, C.J. and Truhlar, D.G., In Lipkowitz, K.B. and Boyd, D.B. (Eds.) Reviews in Computational Chemistry, Vol. 6, VCH Publishers, New York, NY, in press.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Storer, J.W., Giesen, D.J., Cramer, C.J. et al. Class IV charge models: A new semiempirical approach in quantum chemistry. J Computer-Aided Mol Des 9, 87–110 (1995). https://doi.org/10.1007/BF00117280
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00117280