Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Bifurcation analysis of periodic SEIR and SIR epidemic models

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The bifurcations of the periodic solutions of SEIR and SIR epidemic models with sinusoidally varying contact rate are investigated. The analysis is carried out with respect to two parameters: the mean value and the degree of seasonality of the contact rate. The corresponding portraits in the two-parameter space are obtained by means of a numerical continuation method. Codimension two bifurcations (degenerate flips and cusps) are detected, and multiple stable modes of behavior are identified in various regions of the parameter space. Finally, it is shown how the parametric portrait of the SEIR model tends to that of the SIR model when the latent period tends to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M., May R. M.: Directly transmitted infectious diseases: control by vaccination. Science 215, 1053–1054 (1982)

    Google Scholar 

  2. Arnold, V. I.: Geometrical methods in the theory of ordinary differential equations. Berlin Heidelberg New York: Springer 1983

    Google Scholar 

  3. Arnold, V. I., Afraimovich, V. S., Il'yashenko, Yu. S., Shil'nikov, L. P.: Bifurcation theory (in Russian). In: Anosov, D. V., Arnold, V. I. (eds.) Dynamical systems, vol. 5, pp. 5–218. Moscow: VINITI 1986

    Google Scholar 

  4. Aron, J. L.: Multiple attractors in response to a vaccination program. Theor. Popul. Biol. 38, 58–67 (1990)

    Google Scholar 

  5. Aron, J. L., Schwartz, I. B.: Seasonality and period-doubling bifurcations in an epidemic model. J. Theor. Biol. 110, 665–679 (1984)

    Google Scholar 

  6. Bailey, N. T. J.: The mathematical theory of infectious disease and its applications, 2nd ed. London: Griffin 1975

    Google Scholar 

  7. Diekmann, O., Kretzschmar, M.: Patterns in the effects of infectious diseases on population growth. J. Math. Biol. 29, 539–570 (1991)

    Google Scholar 

  8. Dietz, K.: The incidence of infectious diseases under the influence of seasonal fluctuations. In: Berger, J. et al. (eds.) Mathematical models in medicine. (Lect. Notes Biomath. vol. 11, pp. 1–15) Berlin Heidelberg New York: Springer 1976

    Google Scholar 

  9. Emerson, H.: Measles and whooping cough. Am. J. Public Health 27, 1–153 (1937)

    Google Scholar 

  10. Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Berlin Heidelberg New York: Springer 1986

    Google Scholar 

  11. Hethcote, H. W., Stech, H. W., Van den Driessche, P.: Nonlinear oscillations in epidemic models. SIAM J. Appl. Math. 40, 1–19 (1981)

    Google Scholar 

  12. Hethcote, H. W., Van den Driessche, P.: Some epidemiological models with nonlinear incidence. J. Math. Biol. 29, 271–287 (1991)

    Google Scholar 

  13. Kermack, W. O., McKendrick, A. G.: Mathematical theory of epidemics. Proc. R. Soc. Lond. 115, 700–721 (1927)

    Google Scholar 

  14. Khibnik, A. I., Kuznetsov, Yu. A., Levitin, V. V., Nikolaev, E. V.: Continuation techniques and interactive software for bifurcation analysis of ODEs and iterated maps. Physica D 62, 360–371 (1993)

    Google Scholar 

  15. Kuznetsov, Yu. A., Muratori, S., Rinaldi, S.: Bifurcations and chaos in a periodic predator prey model. Int. J. Bif. Chaos 2, 117–128 (1992)

    Google Scholar 

  16. Kuznetsov, Yu. A., Rinaldi, S.: Numerical analysis of the flip bifurcation of maps. Appl. Math. Comput. 43, 231–236 (1991)

    Google Scholar 

  17. Liu, W. M., Hethcote, H. W., Levin, S. A.: Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol. 25, 359–380 (1987)

    Google Scholar 

  18. Liu, W. M., Levin, S. A., Iwasa, Y.: Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. Math. Biol. 23,187–204 (1986)

    Google Scholar 

  19. London, W. P., Yorke, J. A.: Recurrent outbreaks of measles, chickenpox, and mumps. I. Seasonal variation in contact rates. Am. J. Epidemiol. 98, 458–468 (1973)

    Google Scholar 

  20. Olsen, L. F., Truty, G. L., Schaffer, W. M.: Oscillations and chaos in epidemics: a nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark. Theor. Popul. Biol. 33, 344–370(1988)

    Google Scholar 

  21. Rinaldi, S., Muratori, S., Kuznetsov, Yu.: Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities. Bull. Math. Biol. 55, 15–35 (1993)

    Google Scholar 

  22. Schaffer, W. M.: Can nonlinear dynamics elucidate mechanisms in ecology and epidemiology? IMA J. Math. Appl. Biol. Med. 2, 221–252 (1985)

    Google Scholar 

  23. Schaffer, W. M.: Perceiving order in the chaos of nature. In: Boyce, M. S. (ed.) Evolution of life histories of mammals, pp. 313–350. New Haven: Yale University Press 1988

    Google Scholar 

  24. Schwartz, I. B.: Multiple stable recurrent outbreaks and predictability in seasonally forced nonlinear epidemic models. J. Math. Biol. 21, 347–361 (1985)

    Google Scholar 

  25. Schwartz, I. B.: Nonlinear dynamics of seasonally driven epidemic models. In Vichnevetsky, R., Borne, P., Vignes, J. (eds.) Proc. 12th IMACS World Congress 1988, vol. 4, pp. 166–169. Basel: Baltzer 1989

    Google Scholar 

  26. Schwartz, I. B., Smith, H. L.: Infinite subharmonic bifurcation in an SEIR epidemic model. J. Math. Biol. 18, 233–253 (1983)

    Google Scholar 

  27. Seydel, R.: Tutorial on continuation. Int. J. Bif. Chaos 1, 3–11 (1991)

    Google Scholar 

  28. Smith, H. L.: Subharmonic bifurcation in an S-I-R epidemic model. J. Math. Biol. 17,163–177 (1983)

    Google Scholar 

  29. Smith, H. L.: Multiple stable subharmonics for a periodic epidemic model. J. Math. Biol. 17, 179–190 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, Y.A., Piccardi, C. Bifurcation analysis of periodic SEIR and SIR epidemic models. J. Math. Biol. 32, 109–121 (1994). https://doi.org/10.1007/BF00163027

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00163027

Key words