Abstract
The bifurcations of the periodic solutions of SEIR and SIR epidemic models with sinusoidally varying contact rate are investigated. The analysis is carried out with respect to two parameters: the mean value and the degree of seasonality of the contact rate. The corresponding portraits in the two-parameter space are obtained by means of a numerical continuation method. Codimension two bifurcations (degenerate flips and cusps) are detected, and multiple stable modes of behavior are identified in various regions of the parameter space. Finally, it is shown how the parametric portrait of the SEIR model tends to that of the SIR model when the latent period tends to zero.
Similar content being viewed by others
References
Anderson, M., May R. M.: Directly transmitted infectious diseases: control by vaccination. Science 215, 1053–1054 (1982)
Arnold, V. I.: Geometrical methods in the theory of ordinary differential equations. Berlin Heidelberg New York: Springer 1983
Arnold, V. I., Afraimovich, V. S., Il'yashenko, Yu. S., Shil'nikov, L. P.: Bifurcation theory (in Russian). In: Anosov, D. V., Arnold, V. I. (eds.) Dynamical systems, vol. 5, pp. 5–218. Moscow: VINITI 1986
Aron, J. L.: Multiple attractors in response to a vaccination program. Theor. Popul. Biol. 38, 58–67 (1990)
Aron, J. L., Schwartz, I. B.: Seasonality and period-doubling bifurcations in an epidemic model. J. Theor. Biol. 110, 665–679 (1984)
Bailey, N. T. J.: The mathematical theory of infectious disease and its applications, 2nd ed. London: Griffin 1975
Diekmann, O., Kretzschmar, M.: Patterns in the effects of infectious diseases on population growth. J. Math. Biol. 29, 539–570 (1991)
Dietz, K.: The incidence of infectious diseases under the influence of seasonal fluctuations. In: Berger, J. et al. (eds.) Mathematical models in medicine. (Lect. Notes Biomath. vol. 11, pp. 1–15) Berlin Heidelberg New York: Springer 1976
Emerson, H.: Measles and whooping cough. Am. J. Public Health 27, 1–153 (1937)
Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Berlin Heidelberg New York: Springer 1986
Hethcote, H. W., Stech, H. W., Van den Driessche, P.: Nonlinear oscillations in epidemic models. SIAM J. Appl. Math. 40, 1–19 (1981)
Hethcote, H. W., Van den Driessche, P.: Some epidemiological models with nonlinear incidence. J. Math. Biol. 29, 271–287 (1991)
Kermack, W. O., McKendrick, A. G.: Mathematical theory of epidemics. Proc. R. Soc. Lond. 115, 700–721 (1927)
Khibnik, A. I., Kuznetsov, Yu. A., Levitin, V. V., Nikolaev, E. V.: Continuation techniques and interactive software for bifurcation analysis of ODEs and iterated maps. Physica D 62, 360–371 (1993)
Kuznetsov, Yu. A., Muratori, S., Rinaldi, S.: Bifurcations and chaos in a periodic predator prey model. Int. J. Bif. Chaos 2, 117–128 (1992)
Kuznetsov, Yu. A., Rinaldi, S.: Numerical analysis of the flip bifurcation of maps. Appl. Math. Comput. 43, 231–236 (1991)
Liu, W. M., Hethcote, H. W., Levin, S. A.: Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol. 25, 359–380 (1987)
Liu, W. M., Levin, S. A., Iwasa, Y.: Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. Math. Biol. 23,187–204 (1986)
London, W. P., Yorke, J. A.: Recurrent outbreaks of measles, chickenpox, and mumps. I. Seasonal variation in contact rates. Am. J. Epidemiol. 98, 458–468 (1973)
Olsen, L. F., Truty, G. L., Schaffer, W. M.: Oscillations and chaos in epidemics: a nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark. Theor. Popul. Biol. 33, 344–370(1988)
Rinaldi, S., Muratori, S., Kuznetsov, Yu.: Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities. Bull. Math. Biol. 55, 15–35 (1993)
Schaffer, W. M.: Can nonlinear dynamics elucidate mechanisms in ecology and epidemiology? IMA J. Math. Appl. Biol. Med. 2, 221–252 (1985)
Schaffer, W. M.: Perceiving order in the chaos of nature. In: Boyce, M. S. (ed.) Evolution of life histories of mammals, pp. 313–350. New Haven: Yale University Press 1988
Schwartz, I. B.: Multiple stable recurrent outbreaks and predictability in seasonally forced nonlinear epidemic models. J. Math. Biol. 21, 347–361 (1985)
Schwartz, I. B.: Nonlinear dynamics of seasonally driven epidemic models. In Vichnevetsky, R., Borne, P., Vignes, J. (eds.) Proc. 12th IMACS World Congress 1988, vol. 4, pp. 166–169. Basel: Baltzer 1989
Schwartz, I. B., Smith, H. L.: Infinite subharmonic bifurcation in an SEIR epidemic model. J. Math. Biol. 18, 233–253 (1983)
Seydel, R.: Tutorial on continuation. Int. J. Bif. Chaos 1, 3–11 (1991)
Smith, H. L.: Subharmonic bifurcation in an S-I-R epidemic model. J. Math. Biol. 17,163–177 (1983)
Smith, H. L.: Multiple stable subharmonics for a periodic epidemic model. J. Math. Biol. 17, 179–190 (1983)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kuznetsov, Y.A., Piccardi, C. Bifurcation analysis of periodic SEIR and SIR epidemic models. J. Math. Biol. 32, 109–121 (1994). https://doi.org/10.1007/BF00163027
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF00163027