Abstract
We propose a new algorithm for stereoscopic depth perception, where the depth map is the momentary state of a dynamic process. To each image point we assign a set of possible disparity values. In a dynamic process with competition and cooperation, the correct disparity value is selected for each image point. Therefore, we solve the correspondence problem by a dynamic, self-organizing process, the structure of which shows analogies to the human visual system. The algorithm can be implemented in a massive parallel manner and yields good results for either artificial or natural images.
Similar content being viewed by others
References
Barnard ST, Fischler MA (1982) Computational stereo. Comput Surveys 14:553–572
Bourdy C (1989) Reconstruction et interprétation 3D en vision binoculaire humaine. Traitement de l'information disparite. J Opt (Paris) 20:243–258
Brockelbank DC, Yang YH (1989) Experimental investigation in the use of color in computational stereopsis. IEEE Trans Systems Man Cybern 19:1365–1383
Dev P (1975) Perception of depth surfaces in random-dot stereograms: neural net model. Int J Man Machine Stud 7:511–528
Dhond UR, Aggarwal JK (1989) Structure from stereo a review. IEEE Trans Systems Man Cybern 19:1489–1510
Drumheller M, Poggio T (1986) On parallel stereo. Proceedings of IEEE Conference on Robotics and Automation. Washington, DC, pp 1439–1448
Fender D, Julesz B (1967) Extension of Panum's fusional area in binoculary stabilized vision. J Opt Soc Am [A] 57:819–830
Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Machine Intell 6:721–741
Haken H (1979) Pattern formation and pattern recognition an attempt at a synthesis. In: Haken H (ed) Pattern formation by dynamical systems and pattern recognition. Springer, Berlin Heidelberg New York
Haken H (1987) Synergetic computers for pattern recognition and associative memory. In: Haken H (ed) Computational systems natural and artificial. Springer, Berlin Heidelberg New York
Haken H (1991) Synergetic computers and cognition. Springer, Berlin Heidelberg New York
Hentschel HGE, Fine A (1989) Statistical mechanics of stereoscopic vision. Phys Rev A 40:3983–3997
Julesz B (1971) Foundations of cyclopean perception. University of Chicago Press, Chicago
Little JJ, Bülthoff HH, Poggio T (1987) Parallel optical flow computation. In: Proceedings of the Image Understanding Workshop. Morgan Kaufmann, San Mateo, pp 915–920
Marr D, Hildreth H (1980) Theory of edge detection. Proc R Soc Lond [Biol] 207:187–217
Marr D, Poggio P (1976) Cooperative computation of stereo disparity. Science 194:283–287
Marr D, Poggio T (1979) A computational theory of human stereo vision. Proc R Soc Lond [Biol] 204:301–328
Mutura T, Shimizu H (1993) Oscillatory binocular system and temporal segmentation of stereoscopic depth surfaces. Biol Cybern 68:381–391
Poggio T, Torre V, Koch C (1985) Computational vision and regularization theory. Nature 317:314–319
Pollard SB, Mayhew JEW, Frisby JP (1985) PMF: A stereo correspondence algorithm using a disparity gradient limit. Perception 14:449–470
Prazdny K (1985) Detection of binocular disparities. Biol Cybern 52:93–99
Schindel M (1992) Theorie eines Halbleitersystems zur Realisierung der Ordnungsparameterdynamik eines synergetischem Computers Doctoral thesis, Institut für Theoretische Physik und Synergetik, Universität Stuttgart
Schulz CD (1991) Theorie eines Lasersystems zur Mustererkennung als optische Realisation eines synergetischen Computers. Doctoral thesis, Institut für Theoretische Physik und Synergetik, Universität tuttgart
Terzopoulos D, Witkin A, Kass M (1987) Stereo matching as constrained optimization using scale continutation methods. Optical and Digital Pattern Recognition/SPIE 754:92–99
Yuille A, Geiger D, Bülthoff H (1991) Stereo integration, mean field theory and psychophysics. Network 2:423–442
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Reimann, D., Haken, H. Stereo vision by self-organization. Biol. Cybern. 71, 17–26 (1994). https://doi.org/10.1007/BF00198908
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00198908