Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Stereo vision by self-organization

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We propose a new algorithm for stereoscopic depth perception, where the depth map is the momentary state of a dynamic process. To each image point we assign a set of possible disparity values. In a dynamic process with competition and cooperation, the correct disparity value is selected for each image point. Therefore, we solve the correspondence problem by a dynamic, self-organizing process, the structure of which shows analogies to the human visual system. The algorithm can be implemented in a massive parallel manner and yields good results for either artificial or natural images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnard ST, Fischler MA (1982) Computational stereo. Comput Surveys 14:553–572

    Google Scholar 

  • Bourdy C (1989) Reconstruction et interprétation 3D en vision binoculaire humaine. Traitement de l'information disparite. J Opt (Paris) 20:243–258

    Google Scholar 

  • Brockelbank DC, Yang YH (1989) Experimental investigation in the use of color in computational stereopsis. IEEE Trans Systems Man Cybern 19:1365–1383

    Google Scholar 

  • Dev P (1975) Perception of depth surfaces in random-dot stereograms: neural net model. Int J Man Machine Stud 7:511–528

    Google Scholar 

  • Dhond UR, Aggarwal JK (1989) Structure from stereo a review. IEEE Trans Systems Man Cybern 19:1489–1510

    Google Scholar 

  • Drumheller M, Poggio T (1986) On parallel stereo. Proceedings of IEEE Conference on Robotics and Automation. Washington, DC, pp 1439–1448

  • Fender D, Julesz B (1967) Extension of Panum's fusional area in binoculary stabilized vision. J Opt Soc Am [A] 57:819–830

    Google Scholar 

  • Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Machine Intell 6:721–741

    Google Scholar 

  • Haken H (1979) Pattern formation and pattern recognition an attempt at a synthesis. In: Haken H (ed) Pattern formation by dynamical systems and pattern recognition. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Haken H (1987) Synergetic computers for pattern recognition and associative memory. In: Haken H (ed) Computational systems natural and artificial. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Haken H (1991) Synergetic computers and cognition. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hentschel HGE, Fine A (1989) Statistical mechanics of stereoscopic vision. Phys Rev A 40:3983–3997

    Google Scholar 

  • Julesz B (1971) Foundations of cyclopean perception. University of Chicago Press, Chicago

    Google Scholar 

  • Little JJ, Bülthoff HH, Poggio T (1987) Parallel optical flow computation. In: Proceedings of the Image Understanding Workshop. Morgan Kaufmann, San Mateo, pp 915–920

    Google Scholar 

  • Marr D, Hildreth H (1980) Theory of edge detection. Proc R Soc Lond [Biol] 207:187–217

    Google Scholar 

  • Marr D, Poggio P (1976) Cooperative computation of stereo disparity. Science 194:283–287

    Google Scholar 

  • Marr D, Poggio T (1979) A computational theory of human stereo vision. Proc R Soc Lond [Biol] 204:301–328

    Google Scholar 

  • Mutura T, Shimizu H (1993) Oscillatory binocular system and temporal segmentation of stereoscopic depth surfaces. Biol Cybern 68:381–391

    Google Scholar 

  • Poggio T, Torre V, Koch C (1985) Computational vision and regularization theory. Nature 317:314–319

    Google Scholar 

  • Pollard SB, Mayhew JEW, Frisby JP (1985) PMF: A stereo correspondence algorithm using a disparity gradient limit. Perception 14:449–470

    Google Scholar 

  • Prazdny K (1985) Detection of binocular disparities. Biol Cybern 52:93–99

    Google Scholar 

  • Schindel M (1992) Theorie eines Halbleitersystems zur Realisierung der Ordnungsparameterdynamik eines synergetischem Computers Doctoral thesis, Institut für Theoretische Physik und Synergetik, Universität Stuttgart

  • Schulz CD (1991) Theorie eines Lasersystems zur Mustererkennung als optische Realisation eines synergetischen Computers. Doctoral thesis, Institut für Theoretische Physik und Synergetik, Universität tuttgart

  • Terzopoulos D, Witkin A, Kass M (1987) Stereo matching as constrained optimization using scale continutation methods. Optical and Digital Pattern Recognition/SPIE 754:92–99

    Google Scholar 

  • Yuille A, Geiger D, Bülthoff H (1991) Stereo integration, mean field theory and psychophysics. Network 2:423–442

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reimann, D., Haken, H. Stereo vision by self-organization. Biol. Cybern. 71, 17–26 (1994). https://doi.org/10.1007/BF00198908

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198908

Keywords