Bibliography
Anderson, A. R. and Belnap, N. D., Entailment, Princeton U.P. (1975).
AsenjoF. G., ‘A Calculus of Antinomies’, Notre Dame Journal of Formal Logic XV (1966), 497–509, VII, 103–105.
CurryH. B., ‘The Inconsistency of Certain Formal Logics’, Journal of Symbolic Logic 7 (1942), 115–117.
daCostaN., ‘On the Theory of Inconsistent Formal Systems’, Notre Dame Journal of Formal Logic XV (1974), 497–509.
DunnJ. M., ‘Intuitive Semantics for First-Degree Entailments, and “Coupled Trees”’, Philosophical Studies 29 (1976), 149–168.
vanFraassenB., ‘Presupposition Implication and Self Reference’, Journal of Philosophy 65 (1968), 136–52.
FraenkelA., Bar HillelY. and LevyA., Foundations of Set Theory, North Holland, Amsterdam, 1973.
GödelK., ‘What is Cantor's Continuum Problem’, American Mathematical Monthly 54 (1947), 515–25. Reprinted in P. Benacerraf and H. Putnam (eds.), Philosophy of Mathematics, Blackwell, 1964.
Hilbert, D. and Bernays, P., Grundlagen der Mathematik Vol. II, Springer Verlag, 1939.
KleeneS. C., Metamathematics, North Holland, Amsterdam, 1952.
Lukasiewicz, J., ‘On 3-valued Logic’ (1920) in S. McCall Polish Logic, Oxford U.P., 1967.
Priest, G., ‘Type Theory in which Variables Range Over Predicates’, Ph.D. thesis, University of London, 1974.
Routley, R., ‘Ultralogic as Universal’, Relevance Logic Newsletter 2 (1977).
RoutleyR. and RoutleyV., ‘The Semantics of First Degree Entailment’, Nous VI (1972), 335–359.
TarskiA., ‘Der Wahrheitsbegriff in den formalisierten Sprachen’, Studia Philosophica 1 (1936), 266–405. Reprinted in English in Logic Semantics and Metamathematics, Oxford U.P., 1956.
TarskiA., ‘The Semantic Conception of Truth and the Foundations of Semantics’, Philosophy and Phenomological Research 4 (1944), 341–376. Reprinted in L. Linsky (ed.), Semantics and the Philosophy of Language, University of Illinois, 1952.
Wittgenstein, L., Philosophical Remarks, Blackwell, 1964.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Priest, G. The logic of paradox. J Philos Logic 8, 219–241 (1979). https://doi.org/10.1007/BF00258428
Issue Date:
DOI: https://doi.org/10.1007/BF00258428