Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Numerical investigation of a multiserver retrial model

  • Invited Paper
  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We consider a queueing model in which customers arrive in a Poisson stream to be served by one ofc servers. Each arriving customer enters a pool of active customers and starts generating requests for service at exponentially distributed time intervals at rate σ until he finds a free server and begins service. An analytical solution of this model is difficult and does not lend itself to numerical implementation. In this paper, we make a simplifying approximation, based on understanding of the physical behavior of the system, which yields an infinitesimal generator with a modified matrix-geometric equilibrium probability vector. That vector can be very efficiently computed even for high congestion levels. Illustrative numerical examples demonstrate the effectiveness of the approximation as well as the effect of the retrial rate on the system behavior for various levels of congestion. This study shows how numerical results for analytically intractable systems can be obtained by combining intuition with efficient algorithmic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Alexsandrov, A queueing system with repeated orders, Eng. Cybernet. 12 (1974) 1–4.

    Google Scholar 

  2. J.W. Cohen, Basic problems of telephone traffic theory and the influence of repeated calls, Philips Telecomm. Rev. 18 (1957) 49–99.

    Google Scholar 

  3. G.I. Falin, A single-line system with secondary orders, Eng. Cybernet. 17 (1979) 76–83.

    Google Scholar 

  4. G.I. Falin, Double channel queueing system with repeated calls, Paper #4221-84, All-Union Institute for Scientific and Technical Information, Moscow, USSR (1984).

    Google Scholar 

  5. G.I. Falin, On sufficient conditions for ergodicity of multichannel queueing systems with repeated calls, Adv. Appl. Probab. 16 (1984) 447–448.

    Google Scholar 

  6. G.I. Falin, Multichannel queueing systems with repeated calls under high intensity of repetition, J. Inform. Proc. Cybernet. 1 (1987) 37–47.

    Google Scholar 

  7. G.I. Falin, Error estimates in the approximation of countable Markov chains connected with the models of repeated calls, Vestnik Moskov Univ. Ser. 1, Mat. Mekh. 2 (1987) 12–15 (in Russian).

    Google Scholar 

  8. A.A. Fredericks and G.A. Reisner, Approximations to stochastic service systems, with an application to a retrial model, Bell Syst. Techn. J. 58 (1979) 557–576.

    Google Scholar 

  9. B. Greenberg, An upper bound on the performance of queues with returning customers, J. Appl. Probab. 24 (1987) 466–475.

    Google Scholar 

  10. T. Hanschke, Explicit formulas for the characteristics of theM/M/2/2 queue with repeated attempts, J. Appl. Probab. 24 (1987) 486–494.

    Google Scholar 

  11. G.L. Jonin and J.J. Sedol, Telephone systems with repeated calls,6th Int. Teletraffic Congress, Munich (1970) pp. 435.1–453.5.

  12. L. Kaufman, Matrix methods for queueing systems, SIAM J. Sci. Statist. Comput. 4 (1983) 525–552.

    Google Scholar 

  13. J. Keilson, J. Cozzolino and M. Young, A service with unfilled requests repeated, Oper. Res. 16 (1968) 1126–1137.

    Google Scholar 

  14. V.G. Kulkarni, Letter to the Editor, J. Appl. Probab. 19 (1982) 901–904.

    Google Scholar 

  15. V.G. Kulkarni, On queueing systems with retrials, J. Appl. Probab. 20 (1983) 380–389.

    Google Scholar 

  16. M.F. Neuts,Matrix Geometric Solutions in Stochastic Models (The Johns Hopkins University Press, Baltimore, MD 1981).

    Google Scholar 

  17. M.F. Neuts and M.F. Ramalhoto, A service model in which the server is required to search for customers, J. Appl. Probab. 21 (1984) 157–166.

    Google Scholar 

  18. M.F. Neuts, The caudal characteristic curve of queues, Adv. Appl. Probab. 18 (1986) 221–254.

    Google Scholar 

  19. C.E.M. Pearce, On the problem of re-attempted calls in teletraffic, Stochastic Models 3 (1987) 393–407.

    Google Scholar 

  20. J. Riordan,Stochastic Service Systems (Wiley, New York, 1962).

    Google Scholar 

  21. R.I. Wilkinson, Theories for toll traffic engineering in the USA, Bell Syst. Techn. J. 35 (1956) 421–514.

    Google Scholar 

  22. T. Yang and J.G.C. Templeton, A survey on retrial queues, Queueing Systems 2 (1987) 201–233.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This author's research was supported in part by Grants Nos. ECS-88-03061 from the National Science Foundation and AFOSR-88-0076 from the Air Force Office of Scientific Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuts, M.F., Rao, B.M. Numerical investigation of a multiserver retrial model. Queueing Syst 7, 169–189 (1990). https://doi.org/10.1007/BF01158473

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01158473

Keywords