Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A new family of mixed finite elements in ℝ3

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

We introduce two families of mixed finite element on conforming inH(div) and one conforming inH(curl). These finite elements can be used to approximate the Stokes' system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brezzi, F.: On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers. RAIRO8, 129–151 (1974)

    Google Scholar 

  2. Brezzi, F., Douglas, J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. (To appear in Numer. Math.)

  3. Ciarlet, P.G.: The finite element method for elliptic problems, Amsterdam North Holland 1978

    Google Scholar 

  4. Ciarlet, P.G., Raviart, P.A.: A mixed finite element method for the biharmonic equation. Mathématical aspects in finite element method (C. de Boor ed.), pp. 125–145. New York: Academic Press 1974

    Google Scholar 

  5. Fortin, M.: An analysis of the convergence of mixed finite element method. RAIRO11, 341–354 (1977)

    Google Scholar 

  6. Nédélec, J.C.: Mixed finite element in ℝ3. Numer. Math.35, 315–341 (1980)

    Google Scholar 

  7. Nédélec, J.C.: Elements finis mixtes incompressibles pour l'equation de Stokes dans ℝ3. Numer. Math.39, 97–112 (1982)

    Google Scholar 

  8. Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical aspects of finite element methods (A. Dold and B. Eckmann, eds.) Lect. Notes 606. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  9. Thomas, J.M.: Thesis Paris (1977)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nédélec, J.C. A new family of mixed finite elements in ℝ3 . Numer. Math. 50, 57–81 (1986). https://doi.org/10.1007/BF01389668

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01389668

Subject Classifications