Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Some generalizations of the Euler-Knopp transformation

  • Numerical Approximation of Transverse Shearing Stress in Bent Plates
  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

The purpose of this paper is to construct a generalization of the Euler-Knopp transformation. Using this, one may recover previously known transformations, derive new transformations useful for numerical calculations and derive generating functions and other formulas of theoretical interest involving well-known functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brezinski, C.: Génération de suites totalment monotones et oscillantes. C.R. Acad. Sci., Paris280, 729–731 (1975)

    Google Scholar 

  2. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. 2. New York: McGraw-Hill 1953

    Google Scholar 

  3. Gabutti, B.: On two methods for accelerating convergence of series. Numer. Math.43, 439–461 (1984)

    Google Scholar 

  4. Gabutti, B.: On a series acceleration method arising in the integration of strongly oscillating functions. Quad. IAMI82, 7 (1982)

    Google Scholar 

  5. Gabutti, B., Lyness, J.N.: An acceleration method for the power series of entire functions of order 1. Math. Comput.39, 587–597 (1982)

    Google Scholar 

  6. Gatteschi, L.: On some orthogonal polynomial integrals. Math. Comput.35, 1291–1298 (1980)

    Google Scholar 

  7. Gradshteyn, I., Ryshik, I.: Tables of Integrals, Series, and Products. New York: Academic Press 1965

    Google Scholar 

  8. Gustafson, S.-Å.: Convergence acceleration of a general class of power series. Computing21, 53–59 (1978)

    Google Scholar 

  9. Hansen, E.R.: A table of series and products. Englewood Cliffs, N.J.: Prentice-Hall 1975

    Google Scholar 

  10. Hardy, G.H.: Divergent series. Oxford: Clarendon Press 1948

    Google Scholar 

  11. Hartree, D.R.: Numerical Analysis. Oxford: Clarendon Press 1958

    Google Scholar 

  12. Niethammer, W.: Numerical application of Euler's series transformation and its generalization. Numer. Math.34, 271–283 (1980)

    Google Scholar 

  13. Rainville, E.D.: Special Functions. New York: Macmillan Company 1960

    Google Scholar 

  14. Scraton, R.E.: A note on the summation of divergent power series. Proc. Camb. Philos. Soc.66, 109–114 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Applied Mathematical Science Research Subprogram of the Office of Energy Research of the U.S. Department of Energy under Contract W-31-109-Eng-38

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabutti, B., Lyness, J.N. Some generalizations of the Euler-Knopp transformation. Numer. Math. 48, 199–220 (1986). https://doi.org/10.1007/BF01389869

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01389869

Subject Classifications