Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Convolution quadrature and discretized operational calculus. II

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

Operational quadrature rules are applied to problems in numerical integration and the numerical solution of integral equations: singular integrals (power and logarithmic singularities, finite part integrals), multiple timescale convolution, Volterra integral equations, Wiener-Hopf integral equations. Frequency domain conditions, which determine, the stability of such equations, can be carried over to the discretization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ciarlet, P. G.: The Finite Element Method for Elliptic Problems. Amsterdam: North Holland 1978

    Google Scholar 

  • Corduneanu, C.: Integral Equations and Stability of Feedback Systems. New York: Academic Press 1973

    Google Scholar 

  • Dahlquist, G.: A special stability problem for linear multistep methods. BIT3, 27–43 (1963)

    Google Scholar 

  • Desoer, C.A., Vidyasagar, M.: Feedback Systems: Input-Output Properties. New York: Academic Press 1975

    Google Scholar 

  • Doetsch, G.: Handbuch der Laplace-Transformation, Vol. II. Basel: Birkhäuser 1955

    Google Scholar 

  • Eggermont, P.P.B.: Uniform error estimates of Galerkin methods for, monotone Abel-Nolterra integral equations on the half-line. Report, Univ. of Delaware, Newark (1987)

    Google Scholar 

  • Gelbin, D.: Measuring absorption, rates from an aqueous solution. AICHE J. (to appear) orGienger, G.: On convolution quadratures and their application to Fredholm integral equations. Dissertation, Univ. Heidelberg (1987)

  • Gochberg, I.Z., Feldman, I.A.: Faltungsgleichungen und Projektionsverfahren zu ihrer Lösung. Stuttgart: Birkhäuser 1974

    Google Scholar 

  • Golub, G.H., Van Loan, C.F.: Matrix Computations. Oxford: North Oxford Academic 1983

    Google Scholar 

  • Hairer, E., Lubich, Ch., Schlichte, M.: Fast numerical solution of weakly singular Volterra integral equations. Report, Université de Genève (1986) J. Comput. Appl. Math. (to appear)

  • Hairer, E., Maass, P.: Numerical methods for singular nonlinear integro-differential equations. Appl. Numer. Math.3, 243–256 (1987)

    Google Scholar 

  • Hannsgen, K.B., Herdman, T.L., Stech, H.W., Wheeler, R.L. (eds.): Volterra and Functional Differential Equations New York: Marcel Dekker 1982

    Google Scholar 

  • Henrici, P.: Fast Fourier methods in computational complex analysis. SIAM Rev.21, 487–527 (1979)

    Google Scholar 

  • Hoppensteadt, F.C.: An algorithm for approximate solutions to weakly filtered synchronous control systems and nonlinear renewal processes. SIAM J. Appl. Math.43, 834–843 (1983)

    Google Scholar 

  • Krein, M.G.: Integral equations on a half-line with kernel depending upon the difference of the arguments. Uspekhi Mat. Nauk13, 3–120 (1958) (engl.: AMS Translations22, 163–288 (1962))

    Google Scholar 

  • Londen, S.O., Staffans, O.J. (eds.): Volterra Equations. Springer LNM, Vol. 737 (1979)

  • Lopez-Castillo, J.M., Jay-Gerin, J.P., Tannous, C.: Dynamics of electron delocalization: an exact treatment. Europhys. Lett. (to appear)

  • Lubich, C.: Fractional linear multistep methods for Abel-Volterra integral equations of the second kind. Math. Comput.45, 463–469 (1985)

    Google Scholar 

  • Lubich, C.: Fractional linear multistep methods for Abel-Volterra integral equations of the first kind. IMA J. Numer. Anal.7, 97–106 (1987)

    Google Scholar 

  • Lubich, C.: Convolution Quadrature and Discretized Operational Calculus. I. Numer. Math.52, 129–145 (1988)

    Google Scholar 

  • Sanz-Serna, J.M.: A numerical method for a partial integro-differetial equation. SIAM. J. Numer. Anal. (to appear)

  • Sloan, I.H., Spence, A.: Projection methods for integral equations on the half-line. IMA J. Numer. Anal.6, 153–172 (1986)

    Google Scholar 

  • Stenger, F.: The approximate solution of Wiener-Hopf integral equations. J. Math. Anal. Appl.37, 687–724 (1972)

    Google Scholar 

  • Talbot, A.: The accurate numerical inversion of Laplace transforms. J. Inst. Math. Appl.23, 97–120 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This is Part II to the article with the same title (Part I), which was published in Volume 52, No. 2, pp. 129–145 (1988)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lubich, C. Convolution quadrature and discretized operational calculus. II. Numer. Math. 52, 413–425 (1988). https://doi.org/10.1007/BF01462237

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01462237

Subject Classifications