Summary
Operational quadrature rules are applied to problems in numerical integration and the numerical solution of integral equations: singular integrals (power and logarithmic singularities, finite part integrals), multiple timescale convolution, Volterra integral equations, Wiener-Hopf integral equations. Frequency domain conditions, which determine, the stability of such equations, can be carried over to the discretization.
Similar content being viewed by others
References
Ciarlet, P. G.: The Finite Element Method for Elliptic Problems. Amsterdam: North Holland 1978
Corduneanu, C.: Integral Equations and Stability of Feedback Systems. New York: Academic Press 1973
Dahlquist, G.: A special stability problem for linear multistep methods. BIT3, 27–43 (1963)
Desoer, C.A., Vidyasagar, M.: Feedback Systems: Input-Output Properties. New York: Academic Press 1975
Doetsch, G.: Handbuch der Laplace-Transformation, Vol. II. Basel: Birkhäuser 1955
Eggermont, P.P.B.: Uniform error estimates of Galerkin methods for, monotone Abel-Nolterra integral equations on the half-line. Report, Univ. of Delaware, Newark (1987)
Gelbin, D.: Measuring absorption, rates from an aqueous solution. AICHE J. (to appear) orGienger, G.: On convolution quadratures and their application to Fredholm integral equations. Dissertation, Univ. Heidelberg (1987)
Gochberg, I.Z., Feldman, I.A.: Faltungsgleichungen und Projektionsverfahren zu ihrer Lösung. Stuttgart: Birkhäuser 1974
Golub, G.H., Van Loan, C.F.: Matrix Computations. Oxford: North Oxford Academic 1983
Hairer, E., Lubich, Ch., Schlichte, M.: Fast numerical solution of weakly singular Volterra integral equations. Report, Université de Genève (1986) J. Comput. Appl. Math. (to appear)
Hairer, E., Maass, P.: Numerical methods for singular nonlinear integro-differential equations. Appl. Numer. Math.3, 243–256 (1987)
Hannsgen, K.B., Herdman, T.L., Stech, H.W., Wheeler, R.L. (eds.): Volterra and Functional Differential Equations New York: Marcel Dekker 1982
Henrici, P.: Fast Fourier methods in computational complex analysis. SIAM Rev.21, 487–527 (1979)
Hoppensteadt, F.C.: An algorithm for approximate solutions to weakly filtered synchronous control systems and nonlinear renewal processes. SIAM J. Appl. Math.43, 834–843 (1983)
Krein, M.G.: Integral equations on a half-line with kernel depending upon the difference of the arguments. Uspekhi Mat. Nauk13, 3–120 (1958) (engl.: AMS Translations22, 163–288 (1962))
Londen, S.O., Staffans, O.J. (eds.): Volterra Equations. Springer LNM, Vol. 737 (1979)
Lopez-Castillo, J.M., Jay-Gerin, J.P., Tannous, C.: Dynamics of electron delocalization: an exact treatment. Europhys. Lett. (to appear)
Lubich, C.: Fractional linear multistep methods for Abel-Volterra integral equations of the second kind. Math. Comput.45, 463–469 (1985)
Lubich, C.: Fractional linear multistep methods for Abel-Volterra integral equations of the first kind. IMA J. Numer. Anal.7, 97–106 (1987)
Lubich, C.: Convolution Quadrature and Discretized Operational Calculus. I. Numer. Math.52, 129–145 (1988)
Sanz-Serna, J.M.: A numerical method for a partial integro-differetial equation. SIAM. J. Numer. Anal. (to appear)
Sloan, I.H., Spence, A.: Projection methods for integral equations on the half-line. IMA J. Numer. Anal.6, 153–172 (1986)
Stenger, F.: The approximate solution of Wiener-Hopf integral equations. J. Math. Anal. Appl.37, 687–724 (1972)
Talbot, A.: The accurate numerical inversion of Laplace transforms. J. Inst. Math. Appl.23, 97–120 (1979)
Author information
Authors and Affiliations
Additional information
This is Part II to the article with the same title (Part I), which was published in Volume 52, No. 2, pp. 129–145 (1988)
Rights and permissions
About this article
Cite this article
Lubich, C. Convolution quadrature and discretized operational calculus. II. Numer. Math. 52, 413–425 (1988). https://doi.org/10.1007/BF01462237
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01462237