Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The hierarchical basis multigrid method

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

We derive and analyze the hierarchical basis-multigrid method for solving discretizations of self-adjoint, elliptic boundary value problems using piecewise linear triangular finite elements. The method is analyzed as a block symmetric Gauß-Seidel iteration with inner iterations, but it is strongly related to 2-level methods, to the standard multigridV-cycle, and to earlier Jacobi-like hierarchical basis methods. The method is very robust, and has a nearly optimal convergence rate and work estimate. It is especially well suited to difficult problems with rough solutions, discretized using highly nonuniform, adaptively refined meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Axelsson, O., Barker, V.A.: Finite Element Solution of Boundary Value Problems: Theory and Computation. New York: Academic Press 1984

    Google Scholar 

  2. Bank, R.E.: PLTMG User's Guide, Edition 4.0; Technical Report, Department of Mathematics. University of California at San Diego 1985

  3. Bank, R.E., Dupont, T.: Analysis of a Two-Level Scheme for Solving Finite Element Equations. Report CNA-159; Center for Numerical Analysis, University of Texas at Austin 1980

  4. Bank, R.E., Dupont, T.: An Optimal Order Process for Solving Finite Element Equations. Math. Comput.36, 35–51 (1981)

    Google Scholar 

  5. Bank, R.E., Sherman, A., Weiser, A.: Refinement Algorithms and Data Structures for Local Mesh Refinement. In: Scientific Computing (R. Stepleman et al. eds.), Amsterdam: IMACS/North Holland 1983

    Google Scholar 

  6. Braess, D.: The Contraction Number of a Multigrid Method for Solving the Poisson Equation. Numer. Math.37, 387–404 (1981)

    Google Scholar 

  7. Bramble, J.H., Pasciak, J.E., Schatz, A.H.: An Iterative, Method for Elliptic Problems and Regions Partioned into Substructures. Math. Comput.46, 361–369 (1986)

    Google Scholar 

  8. Bramble, J.H., Pasciak, J.E., Schatz, A.H.: The Construction of Preconditioners for Elliptic Problems by Substructuring. I. Math. Comput.47, 103–134 (1986)

    Google Scholar 

  9. Hackbusch, W.: Multigrid Methods and Applications. Berlin Heidelberg New York: Springer 1985

    Google Scholar 

  10. Hageman, L.A., Young, D.M.: Applied Iterative Methods. New York: Academic Press 1981

    Google Scholar 

  11. Maitre, J.F., Musy, F.: The Contraction Number of a Class of Two-Level Methods; an Exact Evaluation for some Finite Element Subspaces and Model Problems. In: Multigrid Methods (W. Hackbusch, U. Trottenberg eds.), Lect. Notes Math. 960, Berlin Heidelberg New York: Springer 1982

    Google Scholar 

  12. Rivara, M.C.: Algorithms for Refining Triangular Grids Suitable for Adaptive and Multigrid Techniques. Int J. Numer. Methods Eng.20, 745–756 (1984)

    Google Scholar 

  13. Young, D.M.: Convergence Properties of the Symmetric and Unsymmetric Successive Overrelaxation Method and Related Methods. Math. Comput.24, 793–807 (1970)

    Google Scholar 

  14. Yserentant, H.: On the Multi-Level Splitting of Finite Element Spaces. Numer. Math.49, 379–412 (1986)

    Google Scholar 

  15. Yserentant, H.: Hierarchical Bases Give Conjugate Gradient Type Methods a Multigrid Speed of Convergence. Appl. Math. Comput.19, 347–358 (1986)

    Google Scholar 

  16. Yserentant, H.: On the Multi-Level Splitting of Finite Element Spaces for Indefinite Elliptic Boundary Value Problems. Siam J. Numer. Anal.23, 581–595 (1986)

    Google Scholar 

  17. Yserentant, H.: Hierarchical Bases of Finite Element Spaces in the Discretization of Nonsymmetric Elliptic Boundary Value Problems. Computing35, 39–49 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bank, R.E., Dupont, T.F. & Yserentant, H. The hierarchical basis multigrid method. Numer. Math. 52, 427–458 (1988). https://doi.org/10.1007/BF01462238

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01462238

Subject Classifications