Abstract
Estimates are given for the rate of approximation of a function by means of greedy algorithms. The estimates apply to approximation from an arbitrary dictionary of functions. Three greedy algorithms are discussed: the Pure Greedy Algorithm, an Orthogonal Greedy Algorithm, and a Relaxed Greedy Algorithm.
Similar content being viewed by others
References
A. Barron, Universal approximation bounds for superposition of a sigmoidal function, IEEE Transactions on Information Theory 39 (1993) 930–945.
C. Darken, M. Donahue, L. Gurvits and E. Sontag, Rate of approximation results motivated by robust neural network learning,6th ACM Conference on Computer Learning Theory, ACM, 1993, pp. 303–309.
R. DeVore, B. Jawerth and V. Popov, Compression of wavelet decompositions, American Journal of Mathematics 114 (1992) 737–785.
L. Jones, A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training, Annals of Statistics 20 (1992) 608–613.
G. Davis, S. Mallat and M. Avellaneda, Adaptive nonlinear approximations, Constructure Approximation, to appear.
E. Schmidt, Zur Theorie der linearen und nichtlinearen Integralgleichungen. I, Math. Annalen 63 (1906–1907) 433–476.
S.B. Stechkin, On absolute convergence of orthogonal series, Dok. Akad. Nauk SSSR 102 (1955) 37–40.
G. Pisier, Remarques sur un resultat non publié de B. Maurey,Seminaire d'Analyse Fonctionelle, 1980–81, Ecole Polytechnique Centre de Mathematiques, Palaiseau.
Author information
Authors and Affiliations
Additional information
This research was supported by the Office of Naval Research Contract N0014-91-J1343.
Rights and permissions
About this article
Cite this article
DeVore, R.A., Temlyakov, V.N. Some remarks on greedy algorithms. Adv Comput Math 5, 173–187 (1996). https://doi.org/10.1007/BF02124742
Issue Date:
DOI: https://doi.org/10.1007/BF02124742