Abstract
This paper investigates the decay of correlations in a large class of non-Markov one-dimensional expanding maps. The method employed is a special version of a general approach recently proposed by the author. Explicit bounds on the rate of decay of correlations are obtained.
Similar content being viewed by others
References
V. Baladi and G. Keller, Zeta functions and transfer operators for piecewise monotone transformations,Commun. Math. Phys. 127:459–477 (1990).
M. Benedicks and L.-S. Young, Absolutely continuous invariant measures and random perturbations for certain one-dimensional maps,Ergodic Theory Dynam. Syst. 12:13–37 (1992).
Garret Birkhoff, Extension of Jentzsch's theorem,Trans. Am. Math. Soc. 85:219–227 (1957).
Garret Birkhoff,Lattice Theory, 3rd ed. (American Mathematical Society Colloquium Publications, Providence, Rhode Island, 1967).
P. Diaconis and D. Stroock, Geometric bounds for eigenvalues of Markov chains,Ann. Appl. Prob. 1:36–61 (1991).
P. Collet, An estimate of the decay of correlations for mixing non Markov expanding maps of the interval, preprint (1994).
P. Ferrero, Contribution à la théorie des états d'équilibre en méchanique statistique, Theses (1981).
P. Ferrero and B. Schmitt, Produits aléatories d'opérateurs matrices de transfert,Prob. Theory Related Fields 79:227–248 (1988).
P. Ferrero and B. Schmitt, On the rate of convergence for some limit ratio theorem related to endomorphisms with a nonregular invariant density, preprint.
P. Ferrero and B. Schmitt, Ruelle's Perron-Frobenius theorem and projective metrics, inRandom Fields, Esztergom (Hungary), Colloquia Mathematica Societas János Bolyai, Vol. 27 (1979).
F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotone transformations,Math. Z. 180:119–140 (1982).
B. R. Hunt, Estimating invariant measures and Lyapunov exponents, preprint.
G. Keller, Un théorème de la limite centrale pour une classe de transformations monotones par morceaux,C. R. Acad. Sci. A 291:155–158 (1980).
C. Ionescu-Tulcea and Marinescu,Ann. Math. 52:140–147 (1950).
C. Liverani, Decay of correlations, to appear inAnn. Math.
A. Lasota and J. Yorke, On existence of invariant measures for piecewise monotonic transformations,Trans. Am. Math. Soc. 186:481–487 (1973).
D. Ruelle,Thermodynamic Formalism (Addison-Wesley, New York, 1978).
D. Ruelle, The thermodynamic formalism for expanding maps,Commun. Math. Phys. 125:239–262 (1989).
D. Ruelle, An extension of the theory of fredholm determinants,IHES 72:175–193 (1990).
Marek Rychlik, Regularity of the metric entropy for expanding maps,Trans. Am. Math. Soc. 315(2):833–847 (1989).
H. Samelson, On the Perron-Frobenius theorem,Michigan Math. J. 4:57–59 (1956).
L.-S. Young, Decay of correlations for certain quadratic maps,Commun. Math. Phys. 146:123–138 (1992).
K. Ziemian, On the Perron-Frobenius operator and limit theorems for some maps of an interval,Ergodic Theory and Related Topics II, Proceedings (Teubner, 1987), pp. 206–211.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Liverani, C. Decay of correlations for piecewise expanding maps. J Stat Phys 78, 1111–1129 (1995). https://doi.org/10.1007/BF02183704
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02183704