Abstract
In 1958 B. Grünbaum made a conjecture concerning families of disjoint translates of a compact convex set in the plane: if such a family consists of at least five sets, and if any five of these sets are met by a common line, then some line meets all sets of the family. This paper gives a proof of the conjecture.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
L. Danzer, Über ein Problem aus der kombinatorischen Geometrie,Arch. Math. (Basel) 8 (1957), 344–351.
L. Danzer, B. Grünbaum, and V. Klee,Helly's Theorem and Its Relatives, 101–180, Proc. Symp. Pure Math. Vol. 7, American Mathematical Society, Providence, RI, 1963.
J. Eckhoff, Transversalenprobleme vom Gallaischen Typ, Dissertation, Göttingen, 1969.
B. Grünbaum, On common transversals,Arch. Math. (Basel) 9 (1958), 465–469.
H. Hadwiger, Ungelöste Probleme, No. 7,Elem. Math. 10 (1955), 111.
H. Hadwiger, Über Eibereiche mit gemeinsamen Treffgeraden,Portugal. Math. 16 (1957), 23–29.
M. Katchalski, A conjecture of Grünbaum on common transversals,Math. Scand. 59 (1986), 192–198.
M. Katchalski, T. Lewis, and A. Liu, Geometric permutations of disjoint translates of convex sets,Discrete Math. 65 (1987), 249–260.
M. Katchalski, T. Lewis, and J. Zaks, Geometric permutations for convex sets,Discrete Math. 54 (1985), 271–284.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Tverberg, H. Proof of grünbaum's conjecture on common transversals for translates. Discrete Comput Geom 4, 191–203 (1989). https://doi.org/10.1007/BF02187722
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF02187722