Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Factoring wavelet transforms into lifting steps

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

This article is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filtering steps, which we call lifting steps but that are also known as ladder structures. This decomposition corresponds to a factorization of the polyphase matrix of the wavelet or subband filters into elementary matrices. That such a factorization is possible is well-known to algebraists (and expressed by the formulaSL(n;R[z, z−1])=E(n;R[z, z−1])); it is also used in linear systems theory in the electrical engineering community. We present here a self-contained derivation, building the decomposition from basic principles such as the Euclidean algorithm, with a focus on applying it to wavelet filtering. This factorization provides an alternative for the lattice factorization, with the advantage that it can also be used in the biorthogonal, i.e., non-unitary case. Like the lattice factorization, the decomposition presented here asymptotically reduces the computational complexity of the transform by a factor two. It has other applications, such as the possibility of defining a wavelet-like transform that maps integers to integers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldroubi, A. and Unser, M. (1993). Families of multiresolution and wavelet spaces with optimal properties.Numer. Funct. Anal. Optim.,14, 417–446.

    MATH  MathSciNet  Google Scholar 

  2. Bass, H. (1968).Algebraic K-Theory, W. A. Benjamin, New York.

    Google Scholar 

  3. Bellanger, M.G. and Daguet, J.L. (1974). TDM-FDM transmultiplexer: Digital polyphase and FFT.IEEE Trans. Commun.,22(9), 1199–1204.

    Article  Google Scholar 

  4. Blahut, R.E. (1984).Fast Algorithms for Digital Signal Processing. Addison-Wesley, Reading, MA.

    MATH  Google Scholar 

  5. Bruekens, A.A.M.L. and van den Enden, A.W.M. (1992). New networks for perfect inversion and perfect reconstruction.IEEE J. Selected Areas Commun.,10(1).

  6. Calderbank, R., Daubechies, I., Sweldens, W., and Yeo, B.-L. Wavelet transforms that map integers to integers.Appl. Comput. Harmon. Anal., (to appear).

  7. Carnicer, J.M., Dahmen, W., and Peña, J.M. (1996). Local decompositions of refinable spaces.Appl. Comput. Harmon. Anal.,3, 127–153.

    Article  MATH  MathSciNet  Google Scholar 

  8. Chui, C.K. (1992).An Introduction to Wavelets. Academic Press, San Diego, CA.

    MATH  Google Scholar 

  9. Chui, C.K., Montefusco, L., and Puccio, L., Eds. (1994).Conference on Wavelets: Theory, Algorithms, and Applications. Academic Press, San Diego, CA.

    Google Scholar 

  10. Chui, C.K. and Wang, J.Z. (1991). A cardinal spline approach to wavelets.Proc. Amer. Math. Soc.,113, 785–793.

    Article  MATH  MathSciNet  Google Scholar 

  11. Chui, C.K. and Wang, J.Z. (1992). A general framework of compactly supported splines and wavelets.J. Approx. Theory,71(3), 263–304.

    Article  MATH  MathSciNet  Google Scholar 

  12. Cohen, A., Daubechies, I., and Feauveau, J. (1992). Bi-orthogonal bases of compactly supported wavelets.Comm. Pure Appl. Math.,45, 485–560.

    MATH  MathSciNet  Google Scholar 

  13. Combes, J.M., Grossmann, A., and Tchamitchian, Ph. Eds. (1989).Wavelets: Time-Frequency Methods and Phase Space. Inverse problems and Theoretical Imaging. Springer-Verlag, New York.

    Google Scholar 

  14. Dahmen, W. and Micchelli, C.A. (1993). Banded matrices with banded inverses II: Locally finite decompositions of spline spaces.Constr. Approx.,9(2–3), 263–281.

    Article  MATH  MathSciNet  Google Scholar 

  15. Dahmen, W., Prössdorf, S., and Schneider, R. (1994). Multiscale methods for pseudo-differential equations on smooth manifolds. In [9], 385–424.

    Google Scholar 

  16. Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets.Comm. Pure Appl. Math.,41, 909–996.

    MATH  MathSciNet  Google Scholar 

  17. Daubechies, I. (1992).Ten Lectures on Wavelet. CBMS-NSF Regional Conf. Series in Appl. Math., vol. 61. Society for Industrial and Applied Mathematics, Philadelphia, PA.

    Google Scholar 

  18. Daubechies, I., Grossmann, A., and Meyer, Y. (1986). Painless nonorthogonal expansions.J. Math. Phys.,27(5), 1271–1283.

    Article  MATH  MathSciNet  Google Scholar 

  19. Donoho, D.L. (1992). Interpolating wavelet transforms. Preprint, Department of Statistics, Stanford University.

  20. Van Dyck, R.E., Marshall, T.G., Chine, M. and Moayeri, N. (1996). Wavelet video coding with ladder structures and entropy-constrained quantization.IEEE Trans. Circuits Systems Video Tech.,6(5), 483–495.

    Article  Google Scholar 

  21. Frazier, M. and Jawerth, B. (1985). Decomposition of Besov spaces.Indiana Univ. Math. J.,34 (4), 777–799.

    Article  MATH  MathSciNet  Google Scholar 

  22. Grossmann, A. and Morlet, J. (1984). Decomposition of Hardy functions into square integrable wavelets of constant shape.SIAM J. Math. Anal.,15(4), 723–736.

    Article  MATH  MathSciNet  Google Scholar 

  23. Harten, A. (1996). Multiresolution representation of data: A general framework.SIAM J. Numer. Anal.,33 (3), 1205–1256.

    Article  MATH  MathSciNet  Google Scholar 

  24. Hartley, B. and Hawkes, T.O. (1983).Rings, Modules and Linear Algebra. Chapman and Hall, New York.

    MATH  Google Scholar 

  25. Herley, C. and Vetterli, M. (1993). Wavelets and recursive filter banks.IEEE Trans. Signal Process.,41(8), 2536–2556.

    Article  MATH  Google Scholar 

  26. Jain, A.K. (1989).Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs, NJ.

    MATH  Google Scholar 

  27. Jayanat, N.S. and Noll, P. (1984).Digital Coding of Waveforms. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  28. Kalker, T.A.C.M. and Shah, I. (1992). Ladder Structures for multidimensional linear phase perfect reconstruction filter banks and wavelets. InProceedings of the SPIE Conference on Visual Communications and Image Processing (Boston), 12–20.

  29. Lounsbery, M., DeRose, T.D., and Warren, J. (1997). Multiresolution surfaces of arbitrary topological type.ACM Trans. on Graphics,16(1), 34–73.

    Article  Google Scholar 

  30. Mallat, S.G. (1989). Multifrequency channel decompositions of images and wavelet models.IEEE Trans. Acoust. Speech Signal Process.,37(12), 2091–2110.

    Article  Google Scholar 

  31. Mallat, S.G. (1989). Multiresolution approximations and wavelet orthonormal bases of L2 (R).Trans. Amer. Math. Soc.,315(1), 69–87.

    Article  MATH  MathSciNet  Google Scholar 

  32. Marshall, T.G. (1993). A fast wavelet transform based upon the Euclidean algorithm. InConference on Information Science and Systems, Johns Hopkins, Maryland.

    Google Scholar 

  33. Marshall, T.G. (1993). U-L block-triangular matrix and ladder realizations of subband coders. InProc. IEEE ICASSP, III: 177–180.

  34. Meyer, Y. (1990).Ondelettes et Opérateurs, I:Ondelettes, II:Opérateurs de Calderón-Zygmund, III: (with R. Coifman),Opérateurs multilinéaires. Hermann, Paris. English translation of first volume,Wavelets and Operators, is published by Cambridge University Press, 1993.

    Google Scholar 

  35. Mintzer, F. (1985). Filters for distortion-free two-band multirate filter banks.IEEE Trans. Acoust. Speech Signal Process.,33, 626–630.

    Article  Google Scholar 

  36. Nguyen, T.Q. and Vaidyanathan, P.P. (1989). Two-channel perfect-reconstruction FIR QMF structures which yield linear-phase analysis and synthesis filters.IEEE Trans. Acoust. Speech Signal Process.,37, 676–690.

    Article  Google Scholar 

  37. Park, H.-J..A computational theory of Laurent polynomial rings and multidimensional FIR systems. PhD thesis, University of California, Berkeley, May 1995.

    Google Scholar 

  38. Reissell, L.-M. (1996). Wavelet multiresolution representation of curves and surfaces.CVGIP: Graphical Models and Image Processing,58(2), 198–217.

    Google Scholar 

  39. Rioul, O. and Duhamel, P. (1992). Fast algorithms for discrete and continuous wavelet transforms.IEEE Trans. Inform. Theory,38(2), 569–586.

    Article  MATH  MathSciNet  Google Scholar 

  40. Schröder, P. and Sweldens, W. (1995). Spherical wavelets: Efficiently representing functions on the sphere.Computer Graphics Proceedings, (SIGGRAPH 95), 161–172.

  41. Shah, I. and Kalker, T.A.C.M. (1994). On Ladder Structures and Linear Phase Conditions for Bi-Orthogonal Filter Banks. InProceedings of ICASSP-94,3, 181–184.

  42. Smith, M.J.T. and Barnwell, T.P. (1986). Exact reconstruction techniques for tree-structured subband coders.IEEE Trans. Acoust. Speech Signal Process.,34(3), 434–441.

    Article  Google Scholar 

  43. Strang, G. and Nguyen, T. (1996).Wavelets and Filter Banks. Wellesley, Cambridge, MA.

    Google Scholar 

  44. Sweldens, W. (1996). The lifting scheme: A custom-design construction of biorthogonal wavelets.Appl. Comput. Harmon. Anal.,3(2), 186–200.

    Article  MATH  MathSciNet  Google Scholar 

  45. Sweldens, W. (1997). The lifting scheme: A construction of second generation wavelets.SIAM J. Math. Anal.,29(2), 511–546.

    Article  MathSciNet  Google Scholar 

  46. Sweldens, W. and Schröder, P. (1996). Building your own wavelets at home. InWavelets in Computer Graphics, 15–87. ACM SIGGRAPH Course notes.

  47. Tian, J. and Wells, R.O. (1996). Vanishing moments and biorthogonal wavelets systems. InMathematics in Signal Processing IV. Institute of Mathematics and Its Applications Conference Series, Oxford University Press.

  48. Tolhuizen, L.M.G., Hollmann, H.D.L., and Kalker, T.A.C.M. (1995). On the realizability of bi-orthogonal M-dimensional 2-band filter banks.IEEE Trans. Signal Process.

  49. Unser, M., Aldroubi, A., and Eden, M. (1993). A family of polynomial spline wavelet transforms.Signal Process.,30, 141–162.

    Article  MATH  Google Scholar 

  50. Vaidyanathan, P.P. (1987). Theory and design of M-channel maximally decimated quadrature mirror filters with arbitrary M, having perfect reconstruction property.IEEE Trans. Acoust. Speech Signal Process.,35(2), 476–492.

    Article  MATH  Google Scholar 

  51. Vaidyanathan, P.P. and Hoang, P.-Q. (1988). Lattice structures for optimal design and robust implementation of two-band perfect reconstruction QMF banks.IEEE Trans. Acoust. Speech Signal Process.,36, 81–94.

    Article  Google Scholar 

  52. Vaidyanathan, P.P., Nguyen, T.Q., Doĝanata, Z., and Saramäki, T. (1989). Improved technique for design of perfect reconstruction FIR QMF banks with lossless polyphase matrices.IEEE Trans. Acoust. Speech Signal Process.,37(7), 1042–1055.

    Article  Google Scholar 

  53. Vetterli, M. (1986). Filter banks allowing perfect reconstruction.Signal Process.,10, 219–244.

    Article  MathSciNet  Google Scholar 

  54. Vetterli, M. (1988) Running FIR and IIR filtering using multirate filter banks.IEEE Trans. Signal Process.,36, 730–738.

    Article  MATH  Google Scholar 

  55. Vetterli, M. and Le Gall, D. (1989). Perfect reconstruction FIR filter banks: Some properties and factorizations.IEEE Trans. Acoust. Speech Signal Process.,37, 1057–1071.

    Article  Google Scholar 

  56. Vetterli, M. and Herley, C. (1992). Wavelets and filter banks: Theory and design.IEEE Trans. Acoust. Speech Signal Process.,40(9), 2207–2232.

    MATH  Google Scholar 

  57. Vetterli, M. and Kovačević, J. (1995).Wavelets and Subband Coding. Prentice Hall, Englewood Cliffs, NJ.

    MATH  Google Scholar 

  58. Wang, Y., M. Orchard, M., Reibman, A., and Vaishampayan, V. (1997). Redundancy rate-distortion analysis of multiple description coding using pairwise correlation transforms. InProc. IEEE ICIP, I, 608–611.

  59. Woods, J.W. and O'Neil, S.D. (1986). Subband coding of images.IEEE Trans. Acoust. Speech Signal Process. 34(5), 1278–1288.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by John J. Benedetto

Research Tutorial

Acknowledgements and Notes. Page 264.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daubechies, I., Sweldens, W. Factoring wavelet transforms into lifting steps. The Journal of Fourier Analysis and Applications 4, 247–269 (1998). https://doi.org/10.1007/BF02476026

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02476026

Math Subject Classifications

Keywords and Phrases