Abstract
We prove that the inequalitys≦7 holds for finites-transitive graphs assuming that the list of known 2-transitive permutation groups is complete.
Similar content being viewed by others
References
M. Bürker andW. Knapp, Zur Vermutung von Sims über primitive Permutationsgruppen II,Arch. Math. 27 (1976), 352–359.
P. J. Cameron, Finite permutation groups and finite simple groups,Bull. London Math. Soc. 13 (1981), 1–22.
P. J. Cameron, Suborbits in transitive permutation groups, in:Combinatorics, part 3, M. Hall, Jr. and J. H. van Lint (eds.),Mathematical Centre Tracts 57, Amsterdam, 1974.
U. Dempwolff, A factorization lemma and an application,Arch. Math. 27 (1976), 18–21 and 476–479.
A. Gardiner, Arc transitivity in graphs,Quat. J. Math. Oxford (2) 24 (1973), 399–407.
A. Gardiner, Arc transitivity in graphs II,Quat. J. Math. Oxford (2) 25 (1974), 163–167.
A. Gardiner, Doubly primitive vertex stabilizers in graphs,Math. Z. 135 (1974), 157–166.
A. Gardiner, Symmetry conditions in graphs, in:Surveys in Combinatorics, B. Bollobàs (ed.),London Math. Soc. Lecture Note Series 38, Cambridge University Press, Cambridge, 1979.
W. T. Tutte,Connectivity in Graphs, University of Toronto Press, Toronto, 1966.
R. Weiss, Groups with a (B, N)-pair and locally transitive graphs,Nagoya Math. J. 74 (1979), 1–21.
R. Weiss, A geometric classification of certain groups of Lie type,Europ. J. Comb. 1 (1980), 271–282.
R. Weiss, Über symmetrische Graphen und die projektiven Gruppen,Arch. Math. 28 (1977), 110–112.
R. Weiss, An application ofp-factorization methods to symmetric graphs,Math. Proc. Cambridge Phil. Soc. 85 (1979), 43–48.
R. Weiss, Permutation groups with projective unitary subconstituents,Proc. Amer. Math. Soc. 78 (1980), 157–161.
R. Weiss, Elations of graphs,Acta Math. Acad. Sci. Hungar. 34 (1979), 101–103.
R. Weiss,s-Transitive graphs, in:Algebraic Methods in Graph Theory (L. Lovász and V. T. Sós, eds)Coll. Math. Soc. J. Bolyai 25, Bolyai-North-Holland 1981, 827–847.
H. Wielandt,Finite Permutation Groups, Academic Press, New York-London, 1964.
K. Zsigmondy, Zur Theorie der Potenzreste,Monatsh. Math. Phys. 3 (1892), 265–284.