Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The nonexistence of 8-transitive graphs

  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

We prove that the inequalitys≦7 holds for finites-transitive graphs assuming that the list of known 2-transitive permutation groups is complete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bürker andW. Knapp, Zur Vermutung von Sims über primitive Permutationsgruppen II,Arch. Math. 27 (1976), 352–359.

    Article  MATH  Google Scholar 

  2. P. J. Cameron, Finite permutation groups and finite simple groups,Bull. London Math. Soc. 13 (1981), 1–22.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. J. Cameron, Suborbits in transitive permutation groups, in:Combinatorics, part 3, M. Hall, Jr. and J. H. van Lint (eds.),Mathematical Centre Tracts 57, Amsterdam, 1974.

  4. U. Dempwolff, A factorization lemma and an application,Arch. Math. 27 (1976), 18–21 and 476–479.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Gardiner, Arc transitivity in graphs,Quat. J. Math. Oxford (2) 24 (1973), 399–407.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Gardiner, Arc transitivity in graphs II,Quat. J. Math. Oxford (2) 25 (1974), 163–167.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Gardiner, Doubly primitive vertex stabilizers in graphs,Math. Z. 135 (1974), 157–166.

    Article  MathSciNet  Google Scholar 

  8. A. Gardiner, Symmetry conditions in graphs, in:Surveys in Combinatorics, B. Bollobàs (ed.),London Math. Soc. Lecture Note Series 38, Cambridge University Press, Cambridge, 1979.

    Google Scholar 

  9. W. T. Tutte,Connectivity in Graphs, University of Toronto Press, Toronto, 1966.

    MATH  Google Scholar 

  10. R. Weiss, Groups with a (B, N)-pair and locally transitive graphs,Nagoya Math. J. 74 (1979), 1–21.

    MATH  MathSciNet  Google Scholar 

  11. R. Weiss, A geometric classification of certain groups of Lie type,Europ. J. Comb. 1 (1980), 271–282.

    MATH  Google Scholar 

  12. R. Weiss, Über symmetrische Graphen und die projektiven Gruppen,Arch. Math. 28 (1977), 110–112.

    Article  Google Scholar 

  13. R. Weiss, An application ofp-factorization methods to symmetric graphs,Math. Proc. Cambridge Phil. Soc. 85 (1979), 43–48.

    Article  MATH  Google Scholar 

  14. R. Weiss, Permutation groups with projective unitary subconstituents,Proc. Amer. Math. Soc. 78 (1980), 157–161.

    Article  MATH  MathSciNet  Google Scholar 

  15. R. Weiss, Elations of graphs,Acta Math. Acad. Sci. Hungar. 34 (1979), 101–103.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Weiss,s-Transitive graphs, in:Algebraic Methods in Graph Theory (L. Lovász and V. T. Sós, eds)Coll. Math. Soc. J. Bolyai 25, Bolyai-North-Holland 1981, 827–847.

  17. H. Wielandt,Finite Permutation Groups, Academic Press, New York-London, 1964.

    MATH  Google Scholar 

  18. K. Zsigmondy, Zur Theorie der Potenzreste,Monatsh. Math. Phys. 3 (1892), 265–284.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, R. The nonexistence of 8-transitive graphs. Combinatorica 1, 309–311 (1981). https://doi.org/10.1007/BF02579337

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02579337

AMS subject classification (1980)