Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The mechanism of silicon modification in aluminum-silicon alloys: Impurity induced twinning

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Modification of silicon by sodium in aluminum silicon eutectic alloy has been examined in detail by optical, SEM, and TEM methods. The aluminum phase is not significantly affected but the silicon becomes very heavily twinned. Modification by quenching does not involve an increase in twin density. Consideration of the atomic positions which attend the formation of growth twins on {111} planes suggests that adsorbed impurity atoms of suitable size, on the solid-liquid interface, could be responsible for changing the {111} stacking sequence, so promoting ‘impurity induced twinning’; the optimum hard sphere radius ratio would be ≈ 1.65. It is proposed that this condition could be the first and principal requirement for a modifying agent to be effective in this system. It is shown further, that other reputed modifiers do also induce a higher twin density. Variations in the efficiency of individual elements to promote such an effect are discussed in terms of other relevant factors which include melting points and vapor pressures, the free energies of formation of compounds — notably of oxides, and the forms of alloy phase diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Hunt and K.A. Jackson:Trans. TMS-AIME, 1966, vol. 236, pp. 843–52.

    CAS  Google Scholar 

  2. R. Elliott:Eutectic Solidification Processing, Butterworths, London, 1983.

    Google Scholar 

  3. A. Pacz: U.S. patent 1387900, 1920.

  4. A. Hellawell:Progr. Materials Science, 1970, vol. 15, p. 1.

    Google Scholar 

  5. G.K. Sigworth:Trans. A.F.S., 1983, vol. 91, pp. 7–16.

    CAS  Google Scholar 

  6. M.D. Day and A. Hellawell:Proc. Roy. Soc. A, 1968, vol. A305, pp. 473–91.

    Article  Google Scholar 

  7. M.D. Hanna, S.Z. Lu, and A. Hellawell:Metall. Trans. A, 1984, vol. 15A, pp. 459–69.

    CAS  Google Scholar 

  8. S.Z. Lu and A. Hellawell:J. Crystal Growth, 1985, vol. 73, pp. 316–28.

    Article  CAS  Google Scholar 

  9. M. Shamsuzzoha and L. M. Hogan:J. Crystal Growth, 1985, vol. 72, pp. 735–37.

    Article  CAS  Google Scholar 

  10. V. de L. Davies and J. M. West:J. Inst. Metals, 1963-1964, vol. 92, pp. 175–80.

    Google Scholar 

  11. R.J. Brisley and D. J. Fray:Metall. Trans. B, 1983, vol. 14B, pp. 435–40.

    CAS  Google Scholar 

  12. S.P. Clough, M. B. Hintz, S.Z. Lu, and A. Hellawell: Michigan Technological University, unpublished work, 1986.

  13. S.Z. Lu and A. Hellawell:Aluminum Alloys — Their Physical and Mechanical Properties, EMAS, London, 1986, vol. I, pp. 81–94.

    Google Scholar 

  14. B. Tolui and A. Hellawell:Acta Metall., 1976, vol. 24, pp. 565–73.

    Article  Google Scholar 

  15. S.C. Flood and I.D. Hunt:Metal. Science, 1981, vol. 15, pp. 287–94.

    Article  CAS  Google Scholar 

  16. R.S. Wagner:Acta Metall., 1960, vol. 8, pp. 57–60.

    Article  Google Scholar 

  17. D.R. Hamilton and R.G. Scidenstricker:J.Appl. Phys., 1960, vol. 31, pp. 1165–68.

    Article  CAS  Google Scholar 

  18. H.A.H. Steen and A. Hellawell:Acta Metall., 1975, vol. 23, pp. 529–35.

    Article  CAS  Google Scholar 

  19. K.A. Jackson:Proc. 4th Int. Conf. on Crystal Growth, North Holland, Amsterdam, 1974, p. 173.

    Google Scholar 

  20. S.Z. Lu: Ph.D. Thesis, Michigan Technological University, Houghton, MI, 1986.

    Google Scholar 

  21. M. D. Hanna and A. Hellawell:Proc. Mat. Res. Soc., 1981, vol. 19, pp. 411–16.

    Google Scholar 

  22. M. Straumanis and N. Brakss:Z. Phys. Chem. B, 1937, vol. 38, pp. 140–55.

    Google Scholar 

  23. A.I. McLeod, L. M. Hogan, C.M. Adam, and D.C. Jenkinson:J. Crystal Growth, 1973, vol. 19, pp. 301–309.

    Article  CAS  Google Scholar 

  24. I.G. Davies and A. Hellawell:Phil. Mag., 1969, vol. 19, pp. 1285–97.

    Article  CAS  Google Scholar 

  25. K. Kobayashi, P.M. Shingu, and R. Ozaki:The Solidification and Casting of Metals, The Metals Society, London, 1979, pp. 101–05.

    Google Scholar 

  26. C.B. Kim and R. W. Heine:J. Inst. Metals, 1963-1964, vol. 92, pp. 367–76.

    Google Scholar 

  27. Q. Zhang, S. Liu, and J. Hu:Acta Met. Sinica, 1984, vol. 20 (2), pp. 138–44.

    Google Scholar 

  28. Z. Y. Zhou, S. Y. Zhau, Z. R. Zhom, and Z. H. Yang:Giesserei-Prax., 1983, vol. 4, pp. 49–56.

    Google Scholar 

  29. Q. Y. Zhang, C. G. Zheng, and W. S. Han:Acta Met. Sinica, 1981, vol. 17 (4), pp. 130–32.

    CAS  Google Scholar 

  30. N. Cabrera and D. A. Vermilyea:Growth and Perfection of Crystals, Wiley, New York, NY, 1958, p. 394.

    Google Scholar 

  31. M.D. Hanna and A. Hellawell:Metall. Trans. A, 1984, vol. 15A, pp. 595–97.

    CAS  Google Scholar 

  32. O. Kubaschewski and C. B. Alcock:Metallurgical Thermochemistry, Pergamon Press, Oxford, 1979.

    Google Scholar 

  33. R. R. Hultgren:Selected Values of Thermodynamical Properties of Metals and Alloys, ASM, 1973.

  34. P. Villars and L. D. Calvert:Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM, 1985, vols. II and III.

  35. W. Hume-Rothery and G. V. Raynor:The Structure of Metals and Alloys, The Institute of Metals, 1962, Part III, p. 65.

  36. M. Shamsuzzoha and L. M. Hogan:J. Crystal Growth, 1986, vol. 76, pp. 429–39.

    Article  CAS  Google Scholar 

  37. M. Shamsuzzoha and L. M. Hogan:Phil. Mag., 1986, vol. 54, pp. 459–68.

    Article  CAS  Google Scholar 

  38. L. M. Hogan and H. Song:Acta Metall., 1987, vol. 35, pp. 677–80.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Visiting Scholar at Michigan Technological University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, SZ., Hellawell, A. The mechanism of silicon modification in aluminum-silicon alloys: Impurity induced twinning. Metall Trans A 18, 1721–1733 (1987). https://doi.org/10.1007/BF02646204

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646204

Keywords