Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Attribute-value learning versus inductive logic programming: The missing links

Extended abstract

  • Conference paper
  • First Online:
Inductive Logic Programming (ILP 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1446))

Included in the following conference series:

Abstract

Two contributions are sketched. A first contribution shows that a special case of relational learning can be transformed into attribute-value learning. However, it is much more tractable to stick to the relational representation than to apply the sketched transformation. This provides a sound theoretical justification for inductive logic programming. In a second contribution, we show how existing attribute-value learning techniques and systems can be upgraded towards inductive logic programming using the ‘Leuven’ methodology and illustrate it using the Claudien, Tilde, ICL, Warmr, TIC, MacCent and RRL systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Blockeel and L. De Raedt. Top-down induction of first order logical decision trees. Artificial Intelligence, 1998. To appear.

    Google Scholar 

  2. H. Blockeel, L. De Raedt, and J. Ramon. Top-down induction of clustering trees. In Proceedings of the 15th International Conference on Machine Learning, 1998.

    Google Scholar 

  3. I. Bratko and S. Muggleton. Applications of inductive logic programming. Communications of the ACM, 38(11):65–70, 1995.

    Google Scholar 

  4. P. Clark and T. Niblett. The CN2 algorithm. Machine Learning, 3(4):261–284, 1989.

    Google Scholar 

  5. L. De Raedt, editor. Advances in Inductive Logic Programming, volume 32 of Frontiers in Artificial Intelligence and Applications. IOS Press, 1996.

    Google Scholar 

  6. L. De Raedt. Logical settings for concept learning. Artificial Intelligence, 95:187–201, 1997.

    Google Scholar 

  7. L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 26:99–146, 1997.

    Google Scholar 

  8. L. De Raedt and S. Dzeroski. First order jk-clausal theories are PAC-learnable. Artificial Intelligence, 70:375–392, 1994.

    Google Scholar 

  9. L. De Raedt and W. Van Laer. Inductive constraint logic. In Proceedings of the 5th Workshop on Algorithmic Learning Theory, volume 997 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 1995.

    Google Scholar 

  10. L. Dehaspe. Maximum entropy modeling with clausal constraints. In Proceedings of the 7th International Workshop on Inductive Logic Programming, volume 1297 of Lecture Notes in Artificial Intelligence, pages 109–124. Springer-Verlag, 1997.

    Google Scholar 

  11. L. Dehaspe and L. De Raedt. Mining association rules in multiple relations. In Proceedings of the 7th International Workshop on Inductive Logic Programming, volume 1297 of Lecture Notes in Artificial Intelligence, pages 125–132. Springer-Verlag, 1997.

    Google Scholar 

  12. T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solving the multipleinstance problem with axis-parallel rectangles. Artificial Intelligence, 89(1-2):3171, 1997.

    Google Scholar 

  13. S. Dzeroski and I. Bratko. Applications of inductive logic programming.In L. De Raedt, editor, Advances in inductive logic programming, volume 32 of Frontiers in Artificial Intelligence and Applications, pages 65–81. IOS Press, 1996.

    Google Scholar 

  14. S. Dzeroski, L. De Raedt, and H. Blockeel. Relational reinforcement learning. In Proceedings of the International Conference on Machine Learning. Morgan Kaufmann, 1998.

    Google Scholar 

  15. T. Mitchell. Machine Learning. McGraw-Hill, 1997.

    Google Scholar 

  16. S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. Journal of Logic Programming, 19,20:629–679, 1994.

    Google Scholar 

  17. J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann series in machine learning. Morgan Kaufmann, 1993.

    Google Scholar 

  18. A. Srinivasan, S.H. Muggleton, M.J.E. Sternberg, and R.D. King. Theories for mutagenicity: A study in first-order and feature-based induction. Artificial Intelligence 85, 1996.

    Google Scholar 

  19. L. Valiant. A theory of the learnable. Communications of the ACM, 27:1134–1142, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

David Page

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Raedt, L. (1998). Attribute-value learning versus inductive logic programming: The missing links. In: Page, D. (eds) Inductive Logic Programming. ILP 1998. Lecture Notes in Computer Science, vol 1446. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0027304

Download citation

  • DOI: https://doi.org/10.1007/BFb0027304

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64738-6

  • Online ISBN: 978-3-540-69059-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics