Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dikin's algorithm for matrix linear programming problems

  • Contributed Papers
  • Conference paper
  • First Online:
System Modelling and Optimization

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 197))

Abstract

We construct a generalization of affine-scaling vector fields for matrix linear programming problems. We discuss various properties of these vector fields and suggest a generalization of Dikin's algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.R. Barnes, A variation on Karmarkar's algorithm for solving linear programming problems, Math. Programming, 36(1986), 174–182.

    Article  MATH  MathSciNet  Google Scholar 

  2. D.A. Bayer and J.C. Lagarias, The nonlinear geometry of linear programming.I, Trans. Amer. Math. Soc., 314(1989), 499–526.

    MATH  MathSciNet  Google Scholar 

  3. I. Dikin, Iterative solution of problems of linear and quadratic programming, Soviet. Math. Dokl., 8(1967),674–675.

    MATH  Google Scholar 

  4. L. Faybusovich, Hamiltonian structure of dynamical systems which solve linear programming problems, Physica D53(1991), 217–232.

    MathSciNet  Google Scholar 

  5. R. Fletcher, Semi-definite constraints in optimization, SIAM J. Control Optim., 23(1985),493–513.

    Article  MATH  MathSciNet  Google Scholar 

  6. Yu.E. Nesterov and A.S. Nemirovsky, Self-concordant functions and polynomial time methods in convex programming. Technical report, Centr. Econ. and Math. Inst., Moscow,USSR, 1989.

    Google Scholar 

  7. G. Sonnevend, Applications of analytic centers. In: Numerical Linear algebra, Digital Signal Processing and Parallel Algorithms, Springer, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Henry Jean-Pierre Yvon

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this paper

Cite this paper

Faybusovich, L. (1994). Dikin's algorithm for matrix linear programming problems. In: Henry, J., Yvon, JP. (eds) System Modelling and Optimization. Lecture Notes in Control and Information Sciences, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035472

Download citation

  • DOI: https://doi.org/10.1007/BFb0035472

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19893-2

  • Online ISBN: 978-3-540-39337-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics