Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Higgs couplings and precision electroweak data

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In light of the discovery of a Higgs-like particle at the LHC, we revisit the status of the precision electroweak data, focusing on two discrepant observables: 1) the long-standing 2.4σ deviation in the forward-backward asymmetry of the bottom quark \( A_{\mathrm{FB}}^b \), and 2) the 2.3σ deviation in R b , the ratio of the \( Z\ \to\ b\overline{b} \) partial width to the inclusive hadronic width, which is now in tension after a recent calculation including new two-loop electroweak corrections. We consider possible resolutions of these discrepancies. Taking the data at face value, the most compelling scenario is that new physics directly affects \( A_{\mathrm{FB}}^b \) and R b , bringing the prediction into accord with the measured values. We propose a modified ‘Beautiful Mirrors’ scenario which contains new vector-like quarks that mix with the b quark, modifying the \( Zb\overline{b} \) vertex and thus correcting \( A_{\mathrm{FB}}^b \) and R b . We show that this scenario can lead to modifications to the production rates of the Higgs boson in certain channels, and in particular a sizable enhancement in the diphoton channel. We also describe additional collider tests of this scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. ATLAS collaboration, Observation of an excess of events in the search for the standard model Higgs boson in the gamma-gamma channel with the ATLAS detector, ATLAS-CONF-2012-091 (2012) [INSPIRE], https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2012-091/.

  4. CMS collaboration, Evidence for a new state decaying into two photons in the search for the standard model Higgs boson in pp collisions, CMS-PAS-HIG-12-015 (2012).

  5. ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].

    ADS  Google Scholar 

  6. Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  7. O. Eberhardt et al., Impact of a Higgs boson at a mass of 126 GeV on the standard model with three and four fermion generations, arXiv:1209.1101 [INSPIRE].

  8. M. Baak et al., The electroweak fit of the standard model after the discovery of a new boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].

    ADS  Google Scholar 

  9. A. Freitas and Y.-C. Huang, Electroweak two-loop corrections to sin2 \( \theta_{\mathrm{eff}}^{{b\overline{b}}} \) and R b using numerical Mellin-Barnes integrals, JHEP 08 (2012) 050 [arXiv:1205.0299] [INSPIRE].

    Article  ADS  Google Scholar 

  10. M.S. Chanowitz, The \( Z\to \overline{b}b \) decay asymmetry: lose-lose for the standard model, Phys. Rev. Lett. 87 (2001) 231802 [hep-ph/0104024] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M.S. Chanowitz, Electroweak data and the Higgs boson mass: a case for new physics, Phys. Rev. D 66 (2002) 073002 [hep-ph/0207123] [INSPIRE].

    ADS  Google Scholar 

  12. G. Altarelli, F. Caravaglios, G. Giudice, P. Gambino and G. Ridolfi, Indication for light sneutrinos and gauginos from precision electroweak data, JHEP 06 (2001) 018 [hep-ph/0106029] [INSPIRE].

    Article  ADS  Google Scholar 

  13. J. Erler, J.L. Feng and N. Polonsky, A wide scalar neutrino resonance and \( b\overline{b} \) production at LEP, Phys. Rev. Lett. 78 (1997) 3063 [hep-ph/9612397] [INSPIRE].

    Article  ADS  Google Scholar 

  14. J. Erler and P. Langacker, Indications for an extra neutral gauge boson in electroweak precision data, Phys. Rev. Lett. 84 (2000) 212 [hep-ph/9910315] [INSPIRE].

    Article  ADS  Google Scholar 

  15. D. Choudhury, T.M.P. Tait and C.E.M. Wagner, Beautiful mirrors and precision electroweak data, Phys. Rev. D 65 (2002) 053002 [hep-ph/0109097] [INSPIRE].

    ADS  Google Scholar 

  16. X.-G. He and G. Valencia, The \( Z\to b\overline{b} \) decay asymmetry and left-right models, Phys. Rev. D 66 (2002) 013004 [Erratum ibid. D 66 (2002) 079901] [hep-ph/0203036] [INSPIRE].

  17. D.E. Morrissey and C.E.M. Wagner, Beautiful mirrors, unification of couplings and collider phenomenology, Phys. Rev. D 69 (2004) 053001 [hep-ph/0308001] [INSPIRE].

    ADS  Google Scholar 

  18. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].

    ADS  Google Scholar 

  19. K. Kumar, W. Shepherd, T.M.P. Tait and R. Vega-Morales, Beautiful mirrors at the LHC, JHEP 08 (2010) 052 [arXiv:1004.4895] [INSPIRE].

    Article  ADS  Google Scholar 

  20. F. del Aguila, J. de Blas and M. Pérez-Victoria, Electroweak limits on general new vector bosons, JHEP 09 (2010) 033 [arXiv:1005.3998] [INSPIRE].

    Article  Google Scholar 

  21. L. Da Rold, Solving the \( A_{FB}^b \) anomaly in natural composite models, JHEP 02 (2011) 034 [arXiv:1009.2392] [INSPIRE].

    Article  Google Scholar 

  22. E. Alvarez, L. Da Rold and A. Szynkman, A composite Higgs model analysis of forward-backward asymmetries in the production of tops at Tevatron and bottoms at LEP and SLC, JHEP 05 (2011) 070 [arXiv:1011.6557] [INSPIRE].

    Article  ADS  Google Scholar 

  23. R. Dermisek, S.-G. Kim and A. Raval, New vector boson near the Z-pole and the puzzle in precision electroweak data, Phys. Rev. D 84 (2011) 035006 [arXiv:1105.0773] [INSPIRE].

    ADS  Google Scholar 

  24. A. Djouadi, G. Moreau and F. Richard, Forward-backward asymmetries of the bottom and top quarks in warped extra-dimensional models: LHC predictions from the LEP and Tevatron anomalies, Phys. Lett. B 701 (2011) 458 [arXiv:1105.3158] [INSPIRE].

    ADS  Google Scholar 

  25. R. Dermisek, S.-G. Kim and A. Raval, Znear the Z-pole, Phys. Rev. D 85 (2012) 075022 [arXiv:1201.0315] [INSPIRE].

    ADS  Google Scholar 

  26. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  27. CDF and D0 collaborations, T. Aaltonen et al., Combination of the top-quark mass measurements from the Tevatron collider, Phys. Rev. D 86 (2012) 092003 [arXiv:1207.1069] [INSPIRE].

    ADS  Google Scholar 

  28. Tevatron Electroweak Working Group, CDF and D0 collaborations, 2012 update of the combination of CDF and D0 results for the mass of the W boson, arXiv:1204.0042 [INSPIRE].

  29. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to \( \alpha \left( {M_Z^2} \right) \), Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].

  30. M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Precise prediction for the W boson mass in the standard model, Phys. Rev. D 69 (2004) 053006 [hep-ph/0311148] [INSPIRE].

    ADS  Google Scholar 

  31. G.-C. Cho, K. Hagiwara, Y. Matsumoto and D. Nomura, The MSSM confronts the precision electroweak data and the muon g − 2, JHEP 11 (2011) 068 [arXiv:1104.1769] [INSPIRE].

    Article  ADS  Google Scholar 

  32. K. Hagiwara, S. Matsumoto, D. Haidt and C.S. Kim, A novel approach to confront electroweak data and theory, Z. Phys. C 64 (1994) 559 [Erratum ibid. C 68 (1995) 352] [hep-ph/9409380] [INSPIRE].

  33. G.-C. Cho and K. Hagiwara, Supersymmetry versus precision experiments revisited, Nucl. Phys. B 574 (2000) 623 [hep-ph/9912260] [INSPIRE].

    Article  ADS  Google Scholar 

  34. M. Awramik, M. Czakon and A. Freitas, Electroweak two-loop corrections to the effective weak mixing angle, JHEP 11 (2006) 048 [hep-ph/0608099] [INSPIRE].

    Article  ADS  Google Scholar 

  35. C.P. Burgess, S. Godfrey, H. Konig, D. London and I. Maksymyk, Model independent global constraints on new physics, Phys. Rev. D 49 (1994) 6115 [hep-ph/9312291] [INSPIRE].

    ADS  Google Scholar 

  36. P. Bamert, C.P. Burgess, J.M. Cline, D. London and E. Nardi, R b and new physics: a comprehensive analysis, Phys. Rev. D 54 (1996) 4275 [hep-ph/9602438] [INSPIRE].

    ADS  Google Scholar 

  37. H.E. Haber and H.E. Logan, Radiative corrections to the \( Zb\overline{b} \) vertex and constraints on extended Higgs sectors, Phys. Rev. D 62 (2000) 015011 [hep-ph/9909335] [INSPIRE].

    ADS  Google Scholar 

  38. B. Batell, S. Gori and L.-T. Wang, Exploring the Higgs portal with 10/fb at the LHC, JHEP 06 (2012) 172 [arXiv:1112.5180] [INSPIRE].

    Article  ADS  Google Scholar 

  39. I. Low, J. Lykken and G. Shaughnessy, Have we observed the Higgs (imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].

    ADS  Google Scholar 

  40. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].

    ADS  Google Scholar 

  41. T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].

    ADS  Google Scholar 

  42. M.R. Buckley and D. Hooper, Are there hints of light stops in recent Higgs search results?, Phys. Rev. D 86 (2012) 075008 [arXiv:1207.1445] [INSPIRE].

    ADS  Google Scholar 

  43. M. Montull and F. Riva, Higgs discovery: the beginning or the end of natural EWSB?, JHEP 11 (2012) 018 [arXiv:1207.1716] [INSPIRE].

    Article  ADS  Google Scholar 

  44. J.R. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First glimpses at Higgsface, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].

    Article  ADS  Google Scholar 

  45. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].

    Article  ADS  Google Scholar 

  46. J. Ellis and T. You, Global analysis of the Higgs candidate with mass ∼ 125 GeV, JHEP 09 (2012) 123 [arXiv:1207.1693] [INSPIRE].

    Article  ADS  Google Scholar 

  47. D. Bertolini and M. McCullough, The social Higgs, JHEP 12 (2012) 118 [arXiv:1207.4209] [INSPIRE].

    Article  Google Scholar 

  48. F. Bonnet, T. Ota, M. Rauch and W. Winter, Interpretation of precision tests in the Higgs sector in terms of physics beyond the standard model, Phys. Rev. D 86 (2012) 093014 [arXiv:1207.4599] [INSPIRE].

    ADS  Google Scholar 

  49. N. Craig and S. Thomas, Exclusive signals of an extended Higgs sector, JHEP 11 (2012) 083 [arXiv:1207.4835] [INSPIRE].

    Article  ADS  Google Scholar 

  50. T. Plehn and M. Rauch, Higgs couplings after the discovery, Europhys. Lett. 100 (2012) 11002 [arXiv:1207.6108] [INSPIRE].

    Article  Google Scholar 

  51. A. Djouadi, Precision Higgs coupling measurements at the LHC through ratios of production cross sections, arXiv:1208.3436 [INSPIRE].

  52. CDF, D0 and Tevatron New Physics Higgs Working Group collaborations, Updated combination of CDF and D0 searches for standard model Higgs boson production with up to 10.0 fb −1 of data, arXiv:1207.0449 [INSPIRE].

  53. M. Cvetič, J. Halverson and P. Langacker, Implications of string constraints for exotic matter and Z′ s beyond the standard model, JHEP 11 (2011) 058 [arXiv:1108.5187] [INSPIRE].

    Article  ADS  Google Scholar 

  54. S. Dawson and E. Furlan, A Higgs conundrum with vector fermions, Phys. Rev. D 86 (2012) 015021 [arXiv:1205.4733] [INSPIRE].

    ADS  Google Scholar 

  55. M. Carena, I. Low and C.E.M. Wagner, Implications of a modified Higgs to diphoton decay width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].

    Article  ADS  Google Scholar 

  56. N. Bonne and G. Moreau, Reproducing the Higgs boson data with vector-like quarks, Phys. Lett. B 717 (2012) 409 [arXiv:1206.3360] [INSPIRE].

    ADS  Google Scholar 

  57. H. An, T. Liu and L.-T. Wang, 125 GeV Higgs boson, enhanced di-photon rate and gauged U(1)PQ -extended MSSM, Phys. Rev. D 86 (2012) 075030 [arXiv:1207.2473] [INSPIRE].

    ADS  Google Scholar 

  58. L.G. Almeida, E. Bertuzzo, P.A.N. Machado and R.Z. Funchal, Does Hγγ taste like vanilla new physics?, JHEP 11 (2012) 085 [arXiv:1207.5254] [INSPIRE].

    Article  ADS  Google Scholar 

  59. B. Batell, D. McKeen and M. Pospelov, Singlet neighbors of the Higgs boson, JHEP 10 (2012) 104 [arXiv:1207.6252] [INSPIRE].

    Article  ADS  Google Scholar 

  60. J. Kearney, A. Pierce and N. Weiner, Vectorlike fermions and Higgs couplings, Phys. Rev. D 86 (2012) 113005 [arXiv:1207.7062] [INSPIRE].

    ADS  Google Scholar 

  61. H. Davoudiasl, H.-S. Lee and W.J. Marciano, Dark side of Higgs diphoton decays and muon g−2, Phys. Rev. D 86 (2012) 095009 [arXiv:1208.2973] [INSPIRE].

    ADS  Google Scholar 

  62. K.J. Bae, T.H. Jung and H.D. Kim, 125 GeV Higgs as a pseudo-Goldstone boson in supersymmetry with vector-like matters, arXiv:1208.3748 [INSPIRE].

  63. H.M. Lee, M. Park and W.-I. Park, Axion-mediated dark matter and Higgs diphoton signal, JHEP 12 (2012) 037 [arXiv:1209.1955] [INSPIRE].

    Article  ADS  Google Scholar 

  64. A. Joglekar, P. Schwaller and C.E.M. Wagner, Dark matter and enhanced Higgs to di-photon rate from vector-like leptons, JHEP 12 (2012) 064 [arXiv:1207.4235] [INSPIRE].

    Article  ADS  Google Scholar 

  65. N. Arkani-Hamed, K. Blum, R.T. D’Agnolo and J. Fan, 2:1 for naturalness at the LHC?, arXiv:1207.4482 [INSPIRE].

  66. M. Reece, Vacuum instabilities with a wrong-sign Higgs-gluon-gluon amplitude, arXiv:1208.1765 [INSPIRE].

  67. M.B. Voloshin, CP violation in Higgs diphoton decay in models with vectorlike heavy fermions, Phys. Rev. D 86 (2012) 093016 [arXiv:1208.4303] [INSPIRE].

    ADS  Google Scholar 

  68. D. McKeen, M. Pospelov and A. Ritz, Modified Higgs branching ratios versus CP and lepton flavor violation, Phys. Rev. D 86 (2012) 113004 [arXiv:1208.4597] [INSPIRE].

    ADS  Google Scholar 

  69. M. Carena, S. Gori, N.R. Shah and C.E.M. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    Article  ADS  Google Scholar 

  70. M. Carena, S. Gori, N.R. Shah, C.E.M. Wagner and L.-T. Wang, Light stau phenomenology and the Higgs γγ rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].

    Article  ADS  Google Scholar 

  71. P. Draper and D. McKeen, Diphotons from tetraphotons in the decay of a 125 GeV Higgs at the LHC, Phys. Rev. D 85 (2012) 115023 [arXiv:1204.1061] [INSPIRE].

    ADS  Google Scholar 

  72. J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].

    ADS  Google Scholar 

  73. M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30 (1979) 711 [Yad. Fiz. 30 (1979) 1368] [INSPIRE].

  74. G. Passarino and M.J.G. Veltman, One loop corrections for e + e annihilation into μ + μ in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].

    Article  ADS  Google Scholar 

  75. I. Maksymyk, C.P. Burgess and D. London, Beyond S, T and U, Phys. Rev. D 50 (1994) 529 [hep-ph/9306267] [INSPIRE].

    ADS  Google Scholar 

  76. Y. Okada and L. Panizzi, LHC signatures of vector-like quarks, arXiv:1207.5607 [INSPIRE].

  77. CDF collaboration, T. Aaltonen et al., Search for heavy bottom-like quarks decaying to an electron or muon and jets in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 106 (2011) 141803 [arXiv:1101.5728] [INSPIRE].

    Article  ADS  Google Scholar 

  78. ATLAS collaboration, Search for down-type fourth generation quarks with the ATLAS detector in events with one lepton and hadronically decaying W bosons, Phys. Rev. Lett. 109 (2012) 032001 [arXiv:1202.6540] [INSPIRE].

    Article  ADS  Google Scholar 

  79. CDF collaboration, T. Aaltonen et al., Search for new bottomlike quark pair decays \( Q\overline{Q}\to \left( {t{W^{\mp }}} \right)\left( {\overline{t}{W^{\pm }}} \right) \) in same-charge dilepton events, Phys. Rev. Lett. 104 (2010) 091801 [arXiv:0912.1057] [INSPIRE].

    Article  ADS  Google Scholar 

  80. ATLAS collaboration, Search for same-sign top-quark production and fourth-generation down-type quarks in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 04 (2012) 069 [arXiv:1202.5520] [INSPIRE].

    ADS  Google Scholar 

  81. CMS collaboration, Search for heavy bottom-like quarks in 4.9 inverse femtobarns of pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 05 (2012) 123 [arXiv:1204.1088] [INSPIRE].

    ADS  Google Scholar 

  82. ATLAS collaboration, Search for exotic same-sign dilepton signatures (bquark, T 5/3 and four top quarks production) in 4.7 fb −1 of \( p\overline{p} \) collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, ATLAS-CONF-2012-130 (2012) [INSPIRE].

  83. CDF collaboration, T. Aaltonen et al., Search for new particles leading to Z+ jets final states in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) -TeV, Phys. Rev. D 76 (2007) 072006 [arXiv:0706.3264] [INSPIRE].

    ADS  Google Scholar 

  84. ATLAS collaboration, Search for pair production of a new quark that decays to a Z boson and a bottom quark with the ATLAS detector, Phys. Rev. Lett. 109 (2012) 071801 [arXiv:1204.1265] [INSPIRE].

    Article  ADS  Google Scholar 

  85. CMS collaboration, Search Bto bZ, CMS-PAS-EXO-11-066 (2012).

  86. CMS collaboration, Search for supersymmetery in final states with missing transverse momentum and 0, 1, 2, or3 b jets in 8 TeV pp collisions, CMS-PAS-SUS-12-016 (2012).

  87. CMS collaboration, Search for supersymmetery in final states with missing transverse momentum and 0, 1, 2, or3 b jets with CMS, CMS-PAS-SUS-11-022 (2012).

  88. ATLAS collaboration, Search for top and bottom squarks from gluino pair production in final states with missing transverse energy and at least three b-jets with the ATLAS detector, Eur. Phys. J. C 72 (2012) 2174 [arXiv:1207.4686] [INSPIRE].

    ADS  Google Scholar 

  89. ATLAS collaboration, Search for a supersymmetric partner to the top quark in final states with jets and missing transverse momentum at \( \sqrt{s}=7 \) TeV with the ATLAS detector, arXiv:1208.1447 [INSPIRE].

  90. CMS collaboration, Search for supersymmetry in events with b-quark jets and missing transverse energy in pp collisions at 7 TeV, Phys. Rev. D 86 (2012) 072010 [arXiv:1208.4859] [INSPIRE].

    ADS  Google Scholar 

  91. CDF collaboration, T. Aaltonen et al., Search for a heavy top-like quark in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 107 (2011) 261801 [arXiv:1107.3875] [INSPIRE].

    Article  ADS  Google Scholar 

  92. ATLAS collaboration, Search for pair production of a heavy up-type quark decaying to a W boson and a b quark in the lepton+jets channel with the ATLAS detector, Phys. Rev. Lett. 108 (2012) 261802 [arXiv:1202.3076] [INSPIRE].

    Article  ADS  Google Scholar 

  93. CMS collaboration, Search for tpair production in lepton+jets channel, CMS-PAS-EXO-11-099 (2012).

  94. CMS collaboration, Search for heavy, top-like quark pair production in the dilepton final state in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 716 (2012) 103 [arXiv:1203.5410] [INSPIRE].

    ADS  Google Scholar 

  95. U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev. D 69 (2004) 053004 [hep-ph/0310056] [INSPIRE].

    ADS  Google Scholar 

  96. A. Pierce, J. Thaler and L.-T. Wang, Disentangling dimension six operators through di-Higgs boson production, JHEP 05 (2007) 070 [hep-ph/0609049] [INSPIRE].

    Article  ADS  Google Scholar 

  97. G.D. Kribs, T. Plehn, M. Spannowsky and T.M.P. Tait, Four generations and Higgs physics, Phys. Rev. D 76 (2007) 075016 [arXiv:0706.3718] [INSPIRE].

    ADS  Google Scholar 

  98. R. Contino et al., Anomalous couplings in double Higgs production, JHEP 08 (2012) 154 [arXiv:1205.5444] [INSPIRE].

    Article  ADS  Google Scholar 

  99. G.D. Kribs and A. Martin, Enhanced di-Higgs production through light colored scalars, Phys. Rev. D 86 (2012) 095023 [arXiv:1207.4496] [INSPIRE].

    ADS  Google Scholar 

  100. M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP 10 (2012) 112 [arXiv:1206.5001] [INSPIRE].

    Article  ADS  Google Scholar 

  101. G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Batell.

Additional information

ArXiv ePrint: 1209.6382

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batell, B., Gori, S. & Wang, LT. Higgs couplings and precision electroweak data. J. High Energ. Phys. 2013, 139 (2013). https://doi.org/10.1007/JHEP01(2013)139

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2013)139

Keywords