Abstract
Several string backgrounds which arise in the AdS/CFT correspondence are described by integrable sigma-models. Their target space is always a \( {\mathbb{Z}_4} \) supercoset (a semi-symmetric superspace). Here we list all semi-symmetric cosets which have zero beta function and central charge c ≤ 26 at one loop in perturbation theory.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
V.V. Serganova, Classification of real simple Lie superalgebras and symmetric superspaces, Funkts. Anal. Prilozh. 17 (1983) 46 [Funct. Anal. Appl. 17 (1983) 200].
N. Berkovits, M. Bershadsky, T. Hauer, S. Zhukov and B. Zwiebach, Superstring theory on AdS 2 × S 2 as a coset supermanifold, Nucl. Phys. B 567 (2000) 61 [hep-th/9907200] [SPIRES].
R.R. Metsaev and A.A. Tseytlin, Type IIB superstring action in AdS 5 × S 5 background, Nucl. Phys. B 533 (1998) 109 [hep-th/9805028] [SPIRES].
R. Roiban and W. Siegel, Superstrings on AdS 5 × S 5 supertwistor space, JHEP 11 (2000) 024 [hep-th/0010104] [SPIRES].
I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the AdS 5 × S 5 superstring, Phys. Rev. D 69 (2004) 046002 [hep-th/0305116] [SPIRES].
H. Eichenherr and M. Forger, On the dual symmetry of the nonlinear sigma models, Nucl. Phys. B 155 (1979) 381 [SPIRES].
A.M. Polyakov, Interaction of Goldstone particles in two-dimensions. Applications to ferromagnets and massive Yang-Mills fields, Phys. Lett. B 59 (1975) 79 [SPIRES].
A.M. Polyakov, Conformal fixed points of unidentified gauge theories, Mod. Phys. Lett. A 19 (2004) 1649 [hep-th/0405106] [SPIRES].
I. Adam, A. Dekel, L. Mazzucato and Y. Oz, Integrability of type-II superstrings on Ramond-Ramond backgrounds in various dimensions, JHEP 06 (2007) 085 [hep-th/0702083] [SPIRES].
M.B. Green and J.H. Schwarz, Covariant description of superstrings, Phys. Lett. B 136 (1984) 367 [SPIRES].
J. Rahmfeld and A. Rajaraman, The GS string action on AdS 3 × S 3 with Ramond-Ramond charge, Phys. Rev. D 60 (1999) 064014 [hep-th/9809164] [SPIRES].
J. Park and S.-J. Rey, Green-Schwarz superstring on AdS 3 × S 3, JHEP 01 (1999) 001 [hep-th/9812062] [SPIRES].
J.-G. Zhou, Super 0-brane and GS superstring actions on AdS 2 × S 2, Nucl. Phys. B 559 (1999) 92 [hep-th/9906013] [SPIRES].
R.R. Metsaev and A.A. Tseytlin, Superparticle and superstring in AdS 3 × S 3 Ramond-Ramond background in light-cone gauge, J. Math. Phys. 42 (2001) 2987 [hep-th/0011191] [SPIRES].
H.L. Verlinde, Superstrings on AdS 2 and superconformal matrix quantum mechanics, hep-th/0403024 [SPIRES].
B. Chen, Y.-L. He, P. Zhang and X.-C. Song, Flat currents of the Green-Schwarz superstrings in AdS 5 × S 1 and AdS 3 × S 3 backgrounds, Phys. Rev. D 71 (2005) 086007 [hep-th/0503089] [SPIRES].
M. Hatsuda and Y. Michishita, Kappa symmetric OSp(2|2) WZNW model, JHEP 06 (2008) 049 [arXiv:0804.1831] [SPIRES].
G. Arutyunov and S. Frolov, Superstrings on AdS 4 × CP 3 as a Coset σ-model, JHEP 09 (2008) 129 [arXiv:0806.4940] [SPIRES].
B. Stefanski jr., Green-Schwarz action for Type IIA strings on AdS 4 × CP 3, Nucl. Phys. B 808 (2009) 80 [arXiv:0806.4948] [SPIRES].
A. Babichenko, B. Stefanski jr. and K. Zarembo, Integrability and the AdS 3/CFT 2 correspondence, JHEP 03 (2010) 058 [arXiv:0912.1723] [SPIRES].
B.C. Vallilo, One loop conformal invariance of the superstring in an AdS 5 × S 5 background, JHEP 12 (2002) 042 [hep-th/0210064] [SPIRES].
D. Kagan and C.A.S. Young, Conformal σ-models on supercoset targets, Nucl. Phys. B 745 (2006) 109 [hep-th/0512250] [SPIRES].
V.G.M. Puletti, Operator product expansion for pure spinor superstring on AdS 5 × S 5, JHEP 10 (2006) 057 [hep-th/0607076] [SPIRES].
L. Mazzucato and B.C. Vallilo, On the non-renormalization of the AdS radius, JHEP 09 (2009) 056 [arXiv:0906.4572] [SPIRES].
S. Carlip, Heterotic string path integrals with the Green-Schwarz covariant action, Nucl. Phys. B 284 (1987) 365 [SPIRES].
R. Kallosh and A.Y. Morozov, Green-Schwarz action and loop calculations for superstring, Int. J. Mod. Phys. A 3 (1988) 1943 [Sov. Phys. JETP 67 (1988) 1540] [Zh. Eksp. Teor. Fiz. 94N8 (1988) 42] [SPIRES].
P.B. Wiegmann, Extrinsic geometry of superstrings, Nucl. Phys. B 323 (1989) 330 [SPIRES].
N. Berkovits, C. Vafa and E. Witten, Conformal field theory of AdS background with Ramond-Ramond flux, JHEP 03 (1999) 018 [hep-th/9902098] [SPIRES].
M. Bershadsky, S. Zhukov and A. Vaintrob, PSL(n|n) σ-model as a conformal field theory, Nucl. Phys. B 559 (1999) 205 [hep-th/9902180] [SPIRES].
N. Read and H. Saleur, Exact spectra of conformal supersymmetric nonlinear σ-models in two dimensions, Nucl. Phys. B 613 (2001) 409 [hep-th/0106124] [SPIRES].
A. Babichenko, Conformal invariance and quantum integrability of σ-models on symmetric superspaces, Phys. Lett. B 648 (2007) 254 [hep-th/0611214] [SPIRES].
V.G. Kac, A sketch of Lie superalgebra theory, Commun. Math. Phys. 53 (1977) 31 [SPIRES].
L. Frappat, P. Sorba and A. Sciarrino, Dictionary on Lie superalgebras, hep-th/9607161 [SPIRES].
U. Kraemmer and A. Rebhan, Anomalous anomalies in the Carlip-Kallosh quantization of the Green-Schwarz superstring, Phys. Lett. B 236 (1990) 255 [SPIRES].
F. Bastianelli, P. van Nieuwenhuizen and A. Van Proeyen, Superstring anomalies in the semilight cone gauge, Phys. Lett. B 253 (1991) 67 [SPIRES].
M. Porrati and P. van Nieuwenhuizen, Absence of world sheet and space-time anomalies in the semicovariantly quantized heterotic string, Phys. Lett. B 273 (1991) 47 [SPIRES].
S. Bellucci and R.N. Oerter, Weyl invariance of the Green-Schwarz heterotic sigma model, Nucl. Phys. B 363 (1991) 573 [SPIRES].
S.K. Ashok, R. Benichou and J. Troost, Conformal current algebra in two dimensions, JHEP 06 (2009) 017 [arXiv:0903.4277] [SPIRES].
B. Stefanski jr., Landau-Lifshitz σ-models, fermions and the AdS/CFT correspondence, JHEP 07 (2007) 009 [arXiv:0704.1460] [SPIRES].
J. Gomis, D. Sorokin and L. Wulff, The complete AdS 4 × CP 3 superspace for the type IIA superstring and D-branes, JHEP 03 (2009) 015 [arXiv:0811.1566] [SPIRES].
I. Pesando, The GS type IIB superstring action on AdS 3 × S 3 × T 4, JHEP 02 (1999) 007 [hep-th/9809145] [SPIRES].
C. Candu, V. Mitev, T. Quella, H. Saleur and V. Schomerus, The σ-model on complex projective superspaces, JHEP 02 (2010) 015 [arXiv:0908.0878] [SPIRES].
C. Candu, T. Creutzig, V. Mitev and V. Schomerus, Cohomological reduction of σ-models, 1001.1344 [SPIRES].
V.A. Kazakov, A. Marshakov, J.A. Minahan and K. Zarembo, Classical/quantum integrability in AdS/CFT, JHEP 05 (2004) 024 [hep-th/0402207] [SPIRES].
N. Beisert, V.A. Kazakov, K. Sakai and K. Zarembo, The algebraic curve of classical superstrings on AdS 5 × S 5, Commun. Math. Phys. 263 (2006) 659 [hep-th/0502226] [SPIRES].
N. Gromov and P. Vieira, The AdS 4/CFT 3 algebraic curve, JHEP 02 (2009) 040 [arXiv:0807.0437] [SPIRES].
N. Beisert, The SU(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945 [hep-th/0511082] [SPIRES].
N. Beisert, The SU(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945 [hep-th/0511082] [SPIRES].
N. Beisert and M. Staudacher, Long-range PSU(2, 2|4) Bethe ansätze for gauge theory and strings, Nucl. Phys. B 727 (2005) 1 [hep-th/0504190] [SPIRES].
N. Gromov and P. Vieira, The all loop AdS 4/CFT 3 Bethe ansatz, JHEP 01 (2009) 016 [arXiv:0807.0777] [SPIRES].
N. Gromov, V. Kazakov and P. Vieira, Exact spectrum of anomalous dimensions of planar N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 103 (2009) 131601 [arXiv:0901.3753] [SPIRES].
D. Bombardelli, D. Fioravanti and R. Tateo, Thermodynamic Bethe ansatz for planar AdS/CFT: a proposal, J. Phys. A 42 (2009) 375401 [arXiv:0902.3930] [SPIRES].
N. Gromov, V. Kazakov, A. Kozak and P. Vieira, Exact spectrum of anomalous dimensions of planar N = 4 supersymmetric Yang-Mills theory: TBA and excited states, Lett. Math. Phys. 91 (2010) 265 [arXiv:0902.4458] [SPIRES].
G. Arutyunov and S. Frolov, Thermodynamic Bethe ansatz for the AdS 5 × S 5 mirror model, JHEP 05 (2009) 068 [arXiv:0903.0141] [SPIRES].
D. Bombardelli, D. Fioravanti and R. Tateo, TBA and Y-system for planar AdS 4/CFT 3, Nucl. Phys. B 834 (2010) 543 [arXiv:0912.4715] [SPIRES].
N. Gromov and F. Levkovich-Maslyuk, Y-system, TBA and quasi-classical strings in AdS 4 × CP 3, arXiv:0912.4911 [SPIRES].
H. Stenzel, Über die Darstellbarkeit einer Matrix als Produkt von zwei symmetrischer Matrizen, als Produkt von zwei alternierenden Matrizen und als Produkt von einer symmetrischen und einer alternierenden Matrix (in German), Math. Z. 15 (1922) 1.
K.D. Ikramov and H. Fassbender, On the product of two skew-Hamiltonian matrices or two skew-symmetric matrices, J. Math. Sci. 157 (2009) 697 [Zap. Nauchn. Sem. POMI 359 (2008) 45].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1003.0465
Also at ITEP, Moscow, Russia.
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Zarembo, K. Strings on semisymmetric superspaces. J. High Energ. Phys. 2010, 2 (2010). https://doi.org/10.1007/JHEP05(2010)002
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2010)002