Abstract
In this work we establish that the Inozemtsev system is the Seiberg-Witten integrable system encoding the Coulomb branch physics of 4d \( \mathcal{N} \) = 2 USp(2N) gauge theory with four fundamental and (for N ≥ 2) one antisymmetric tensor hypermultiplets. We describe the transformation from the spectral curves and canonical one-forms of the Inozemtsev system in the N = 1 and N = 2 cases to the Seiberg-Witten curves and differentials explicitly, along with the explicit matching of the modulus of the elliptic curve of spectral parameters to the gauge coupling of the field theory, and of the couplings of the Inozemtsev system to the field theory mass parameters. This result is a particular instance of a more general correspondence between crystallographic elliptic Calogero-Moser systems with Seiberg-Witten integrable systems, which will be explored in future work.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation, and confinement in \( \mathcal{N} \) = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. 430 (1994) 485] [hep-th/9407087] [INSPIRE].
N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in \( \mathcal{N} \) = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].
A. Gorsky, I. Krichever, A. Marshakov, A. Mironov and A. Morozov, Integrability and Seiberg-Witten exact solution, Phys. Lett. B 355 (1995) 466 [hep-th/9505035] [INSPIRE].
R. Donagi and E. Witten, Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys. B 460 (1996) 299 [hep-th/9510101] [INSPIRE].
R. Y. Donagi, Seiberg-Witten integrable systems, alg-geom/9705010 [INSPIRE].
E. J. Martinec and N. P. Warner, Integrable systems and supersymmetric gauge theory, Nucl. Phys. B 459 (1996) 97 [hep-th/9509161] [INSPIRE].
E. J. Martinec, Integrable structures in supersymmetric gauge and string theory, Phys. Lett. B 367 (1996) 91 [hep-th/9510204] [INSPIRE].
E. D’Hoker and D. H. Phong, Calogero-Moser systems in SU(N) Seiberg-Witten theory, Nucl. Phys. B 513 (1998) 405 [hep-th/9709053] [INSPIRE].
E. D’Hoker and D. H. Phong, Calogero-Moser Lax pairs with spectral parameter for general Lie algebras, Nucl. Phys. B 530 (1998) 537 [hep-th/9804124] [INSPIRE].
A. Gorsky, A. Marshakov, A. Mironov and A. Morozov, N = 2 supersymmetric QCD and integrable spin chains: Rational case N (f) < 2Nc, Phys. Lett. B 380 (1996) 75 [hep-th/9603140] [INSPIRE].
A. Gorsky, S. Gukov and A. Mironov, Multiscale N = 2 SUSY field theories, integrable systems and their stringy/brane origin. 1., Nucl. Phys. B 517 (1998) 409 [hep-th/9707120] [INSPIRE].
A. Gorsky and A. Mironov, Integrable many body systems and gauge theories, hep-th/0011197 [INSPIRE].
D. Gaiotto, \( \mathcal{N} \) = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].
E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].
A. Gorsky and N. Nekrasov, Elliptic Calogero-Moser system from two-dimensional current algebra, hep-th/9401021 [INSPIRE].
P. Argyres, O. Chalykh and Y. Lü, in preparation.
M. Caorsi and S. Cecotti, Geometric classification of 4d \( \mathcal{N} \) = 2 SCFTs, JHEP 07 (2018) 138 [arXiv:1801.04542] [INSPIRE].
Y. Tachikawa and G. Zafrir, Reflection groups and 3d \( \mathcal{N} \) ≥ 6 SCFTs, JHEP 12 (2019) 176 [arXiv:1908.03346] [INSPIRE].
V. L. Popov, Communications of the Mathematical Institute, Rijksuniversiteit Utrecht. Vol. 15: Discrete complex reflection groups, Rijksuniversiteit Utrecht, Utrecht Sweden (1982).
V. Goryunov and S. H. Man, The complex crystallographic groups and symmetries of J10, in Advanced Studies in Pure Mathematics. Vol. 43: Singularity theory and its applications, Mathematical Society of Japan, Tokyo Japan (2006), pg. 55.
P. Etingof, G. Felder, X. Ma and A. Veselov, On elliptic Calogero-Moser systems for complex crystallographic reflection groups, J. Algebra 329 (2011) 107 [arXiv:1003.4689].
J. A. Minahan and D. Nemeschansky, An N = 2 superconformal fixed point with E6 global symmetry, Nucl. Phys. B 482 (1996) 142 [hep-th/9608047] [INSPIRE].
J. A. Minahan and D. Nemeschansky, Superconformal fixed points with En global symmetry, Nucl. Phys. B 489 (1997) 24 [hep-th/9610076] [INSPIRE].
O. Aharony and Y. Tachikawa, A Holographic computation of the central charges of d = 4, N = 2 SCFTs, JHEP 01 (2008) 037 [arXiv:0711.4532] [INSPIRE].
D. Nanopoulos and D. Xie, \( \mathcal{N} \) = 2 SU Quiver with USP Ends or SU Ends with Antisymmetric Matter, JHEP 08 (2009) 108 [arXiv:0907.1651] [INSPIRE].
F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and \( \mathcal{N} \) = 2 superconformal field theories, JHEP 09 (2009) 052 [arXiv:0906.0359] [INSPIRE].
D. Gaiotto and S. S. Razamat, Exceptional Indices, JHEP 05 (2012) 145 [arXiv:1203.5517] [INSPIRE].
V. I. Inozemtsev, Lax representation with spectral parameter on a torus for integrable particle systems, Lett. Math. Phys. 17 (1989) 11.
P. C. Argyres, R. Maimon and S. Pelland, The M-theory lift of two O6− planes and four D6-branes, JHEP 05 (2002) 008 [hep-th/0204127] [INSPIRE].
K. Takasaki, Elliptic Calogero-Moser systems and isomonodromic deformations, J. Math. Phys. 40 (1999) 5787 [math/9905101] [INSPIRE].
O. Chalykh, Quantum Lax pairs via Dunkl and Cherednik Operators, Commun. Math. Phys. 369 (2019) 261 [arXiv:1804.01766].
H. Ochiai, T. Oshima and H. Sekiguchi, Commuting families of symmetric differential operators, Proc. Japan Acad. Ser. A 70 (1994) 62.
A. Zotov, Elliptic linear problem for Calogero-Inozemtsev model and Painleve VI equation, Lett. Math. Phys. 67 (2004) 153 [hep-th/0310260] [INSPIRE].
V. M. Buchstaber, G. Felder and A. P. Veselov, Elliptic Dunkl operators, root systems, and functional equations, hep-th/9403178 [INSPIRE].
I. M. Krichever, Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles, Funct. Anal. Appl. 14 (1980) 282.
N. J. Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987) 91 [INSPIRE].
N. Nekrasov, Holomorphic bundles and many body systems, Commun. Math. Phys. 180 (1996) 587 [hep-th/9503157] [INSPIRE].
B. Nasatyr and B. Steer, Orbifold Riemann surfaces and the Yang-Mills-Higgs equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1995) 595 [alg-geom/9504015].
J. C. Hurtubise and E. Markman, Calogero-Moser systems and Hitchin systems, Commun. Math. Phys. 223 (2001) 533 [math/9912161] [INSPIRE].
P. Boalch, Wild character varieties, meromorphic Hitchin systems and Dynkin diagrams, in Nigel Hitchin’s 70th Birthday Conference, 3, 2017 [arXiv:1703.10376] [INSPIRE].
P. Etingof, W. L. Gan and A. Oblomkov, Generalized double affine Hecke algebras of higher rank, J. Reine Angew. Math. 600 (2006) 177 [math/0504089].
P. Boalch, Simply-laced isomonodromy systems, Publ. Math. IHÉS 116 (2012) 1 [arXiv:1107.0874].
A. M. Levin and M. A. Olshanetsky, Painlevé-Calogero correspondence, in Calogero-Moser-Sutherland models, Montréal Canada (1997), CRM Series in Mathematical Physics, Springer, New York U.S.A. (2000) pg. 313.
K. Takasaki, Painlevé-Calogero correspondence revisited, J. Math. Phys. 42 (2001) 1443 [math/0004118] [INSPIRE].
H. Kawakami, Matrix Painlevé systems, J. Math. Phys. 56 (2015) 033503.
M. Bertola, M. Cafasso and V. Roubtsov, Noncommutative Painlevé Equations and Systems of Calogero Type, Commun. Math. Phys. 363 (2018) 503 [arXiv:1710.00736] [INSPIRE].
K.-M. Lee and P. Yi, A Family of \( \mathcal{N} \) = 2 gauge theories with exact S duality, Nucl. Phys. B 520 (1998) 157 [hep-th/9706023] [INSPIRE].
D. S. Freed, Special Kähler manifolds, Commun. Math. Phys. 203 (1999) 31 [hep-th/9712042] [INSPIRE].
S. Gukov and A. Kapustin, New \( \mathcal{N} \) = 2 superconformal field theories from M / F-theory orbifolds, Nucl. Phys. B 545 (1999) 283 [hep-th/9808175] [INSPIRE].
A. Sen, F theory and orientifolds, Nucl. Phys. B 475 (1996) 562 [hep-th/9605150] [INSPIRE].
T. Banks, M. R. Douglas and N. Seiberg, Probing F-theory with branes, Phys. Lett. B 387 (1996) 278 [hep-th/9605199] [INSPIRE].
O. Aharony, J. Sonnenschein, S. Yankielowicz and S. Theisen, Field theory questions for string theory answers, Nucl. Phys. B 493 (1997) 177 [hep-th/9611222] [INSPIRE].
M. R. Douglas, D. A. Lowe and J. H. Schwarz, Probing F-theory with multiple branes, Phys. Lett. B 394 (1997) 297 [hep-th/9612062] [INSPIRE].
D. Gaiotto, G. W. Moore and Y. Tachikawa, On 6d \( \mathcal{N} \) = (2, 0) theory compactified on a Riemann surface with finite area, PTEP 2013 (2013) 013B03 [arXiv:1110.2657] [INSPIRE].
D. Gaiotto, G. W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems, and the WKB Approximation, arXiv:0907.3987 [INSPIRE].
Y. Komori and K. Hikami, Quantum integrability of the generalized elliptic Ruijsenaars models, J. Phys. A 30 (1997) 4341.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2101.04505
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Argyres, P.C., Chalykh, O. & Lü, Y. Inozemtsev system as Seiberg-Witten integrable system. J. High Energ. Phys. 2021, 51 (2021). https://doi.org/10.1007/JHEP05(2021)051
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2021)051