Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Light sterile neutrinos: models and phenomenology

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Motivated by recent hints in particle physics and cosmology, we study the realization of eV-scale sterile neutrinos within both the seesaw mechanism and flavor symmetry theories. We show that light sterile neutrinos can rather easily be accommodated in the popular A 4 flavor symmetry models. The exact tri-bimaximal mixing pattern is perturbed due to active-sterile mixing, which we discuss in detail for one example. In addition, we find an interesting extension of the type I seesaw, which can provide a natural origin for eV-scale sterile neutrinos as well as visible admixtures between sterile and active neutrinos. We also show that the presence of sterile neutrinos would significantly change the observables in neutrino experiments, specifically the oscillation probabilities in short-baseline experiments and the effective mass in neutrino-less double beta decay. The latter can prove particularly helpful in strengthening the case for eV-scale sterile neutrinos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.C. Gonzalez-Garcia and M. Maltoni, Phenomenology with massive neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [SPIRES].

    Article  ADS  Google Scholar 

  2. M. Sorel, J.M. Conrad and M. Shaevitz, A combined analysis of short-baseline neutrino experiments in the (3+1) and (3+2) sterile neutrino oscillation hypotheses, Phys. Rev. D 70 (2004) 073004 [hep-ph/0305255] [SPIRES].

    ADS  Google Scholar 

  3. M. Maltoni and T. Schwetz, Sterile neutrino oscillations after first MiniBooNE results, Phys. Rev. D 76 (2007) 093005 [arXiv:0705.0107] [SPIRES].

    ADS  Google Scholar 

  4. G. Karagiorgi, Z. Djurcic, J.M. Conrad, M.H. Shaevitz and M. Sorel, Viability ofm 2 ∼ 1 eV 2 sterile neutrino mixing models in light of MiniBooNE electron neutrino and antineutrino data from the Booster and NuMI beamlines, Phys. Rev. D 80 (2009) 073001 [arXiv:0906.1997] [SPIRES].

    ADS  Google Scholar 

  5. C. Giunti and M. Laveder, Short-baseline electron neutrino disappearance, tritium beta decay and neutrinoless double-beta decay, Phys. Rev. D 82 (2010) 053005 [arXiv:1005.4599] [SPIRES].

    ADS  Google Scholar 

  6. G. Mention et al., The reactor antineutrino anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [SPIRES].

    ADS  Google Scholar 

  7. J. Kopp, M. Maltoni and T. Schwetz, Are there sterile neutrinos at the eV scale?, arXiv:1103.4570 [SPIRES].

  8. J. Hamann, S. Hannestad, G.G. Raffelt, I. Tamborra and Y.Y.Y. Wong, Cosmology seeking friendship with sterile neutrinos, Phys. Rev. Lett. 105 (2010) 181301 [arXiv:1006.5276] [SPIRES].

    Article  ADS  Google Scholar 

  9. Y.I. Izotov and T.X. Thuan, The primordial abundance of 4 He: evidence for non-standard big bang nucleosynthesis, Astrophys. J. 710 (2010) L67 [arXiv:1001.4440] [SPIRES].

    Article  ADS  Google Scholar 

  10. E. Aver, K.A. Olive and E.D. Skillman, A new approach to systematic uncertainties and self-consistency in helium abundance determinations, JCAP 05 (2010) 003 [arXiv:1001.5218] [SPIRES].

    ADS  Google Scholar 

  11. S.M. Bilenky, S. Pascoli and S.T. Petcov, Majorana neutrinos, neutrino mass spectrum, CP-violation and neutrinoless double beta-decay: II. Mixing of four neutrinos, Phys. Rev. D 64 (2001) 113003 [hep-ph/0104218] [SPIRES].

    ADS  Google Scholar 

  12. S. Goswami and W. Rodejohann, Constraining mass spectra with sterile neutrinos from neutrinoless double beta decay, tritium beta decay and cosmology, Phys. Rev. D 73 (2006) 113003 [hep-ph/0512234] [SPIRES].

    ADS  Google Scholar 

  13. S. Goswami and W. Rodejohann, MiniBooNE results and neutrino schemes with 2 sterile neutrinos: possible mass orderings and observables related to neutrino masses, JHEP 10 (2007) 073 [arXiv:0706.1462] [SPIRES].

    Article  ADS  Google Scholar 

  14. A.S. Riis and S. Hannestad, Detecting sterile neutrinos with KATRIN like experiments, JCAP 02 (2011) 011 [arXiv:1008.1495] [SPIRES].

    Google Scholar 

  15. J. Formaggio and J.A. Barrett, Resolving the reactor neutrino anomaly with the KATRIN neutrino experiment, arXiv:1105.1326 [SPIRES].

  16. H. Nunokawa, O.L.G. Peres and R. Zukanovich Funchal, Probing the LSND scale and four neutrino scenarios with a neutrino telescope, Phys. Lett. B 562 (2003) 279 [hep-ph/0302039] [SPIRES].

    ADS  Google Scholar 

  17. S. Choubey, Signature of sterile species in atmospheric neutrino data at neutrino telescopes, JHEP 12 (2007) 014 [arXiv:0709.1937] [SPIRES].

    Article  ADS  Google Scholar 

  18. S. Razzaque and A.Y. Smirnov, Searching for sterile neutrinos in ice, arXiv:1104.1390 [SPIRES].

  19. S. Choubey, N.P. Harries and G.G. Ross, Turbulent supernova shock waves and the sterile neutrino signature in megaton water detectors, Phys. Rev. D 76 (2007) 073013 [hep-ph/0703092] [SPIRES].

    ADS  Google Scholar 

  20. A. Palazzo, Testing the very-short-baseline neutrino anomalies at the solar sector, Phys. Rev. D 83 (2011) 113013 [arXiv:1105.1705] [SPIRES].

    ADS  Google Scholar 

  21. J.R. Kristiansen and O. Elgaroy, Reactor sterile neutrinos, dark energy and the age of the universe, arXiv:1104.0704 [SPIRES].

  22. P. Minkowski, μ → eγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].

    ADS  Google Scholar 

  23. T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories,Tsukuba Japan, 13–14 Feb. 1979, O. Sawada and A. Sugamoto eds. (1979) [SPIRES].

  24. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Nieuwenhuizen and D.Z. Freedman eds., North Holland (1979) [SPIRES].

  25. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].

    Article  ADS  Google Scholar 

  26. G. Altarelli and F. Feruglio, Discrete flavor symmetries and models of neutrino mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [SPIRES].

    Article  ADS  Google Scholar 

  27. H. Ishimori et al., Non-abelian discrete symmetries in particle physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  28. A.Y. Smirnov and R. Zukanovich Funchal, Sterile neutrinos: direct mixing effects versus induced mass matrix of active neutrinos, Phys. Rev. D 74 (2006) 013001 [hep-ph/0603009] [SPIRES].

    ADS  Google Scholar 

  29. T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, arXiv:1106.2822 [SPIRES].

  30. L. Whitehead, Recent results from MINOS, http://www-numi.fnal.gov/pr_plots/.

  31. G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, Hints of θ 13 > 0 from global neutrino data analysis, Phys. Rev. Lett. 101 (2008) 141801 [arXiv:0806.2649] [SPIRES].

    Article  ADS  Google Scholar 

  32. M. Maltoni and T. Schwetz, Three-flavour neutrino oscillation update and comments on possible hints for a non-zero θ 13, PoS(idm2008)072 [arXiv:0812.3161] [SPIRES].

  33. T. Schwetz, M. Tortola and J.W.F. Valle, Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters, New J. Phys. 13 (2011) 063004 [arXiv:1103.0734] [SPIRES].

    Article  ADS  Google Scholar 

  34. G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, Evidence of θ 13 > 0 from global neutrino data analysis, arXiv:1106.6028 [SPIRES].

  35. D. Gibin, A. Guglielmi, F. Pietropaolo, C. Rubbia and P. Sala, Possible, alternative explanations of the T2K observation of the ν e appearance from an initial ν μ , arXiv:1106.4417 [SPIRES].

  36. W. Rodejohann, Neutrino-less double beta decay and particle physics, arXiv:1106.1334 [SPIRES].

  37. S. Hannestad, Neutrino physics from precision cosmology, Prog. Part. Nucl. Phys. 65 (2010) 185 [arXiv:1007.0658] [SPIRES].

    Article  ADS  Google Scholar 

  38. J. Hamann, J. Lesgourgues and G. Mangano, Using BBN in cosmological parameter extraction from CMB: a forecast for Planck, JCAP 03 (2008) 004 [arXiv:0712.2826] [SPIRES].

    ADS  Google Scholar 

  39. G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165] [SPIRES].

    Article  ADS  Google Scholar 

  40. M. Honda and M. Tanimoto, Deviation from tri-bimaximal neutrino mixing in A 4 flavor symmetry, Prog. Theor. Phys. 119 (2008) 583 [arXiv:0801.0181] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  41. J. Barry and W. Rodejohann, Deviations from tribimaximal mixing due to the vacuum expectation value misalignment in A 4 models, Phys. Rev. D 81 (2010) 093002 [arXiv:1003.2385] [SPIRES].

    ADS  Google Scholar 

  42. A. de Gouvêa, J. Jenkins and N. Vasudevan, Neutrino phenomenology of very low-energy seesaws, Phys. Rev. D 75 (2007) 013003 [hep-ph/0608147] [SPIRES].

    ADS  Google Scholar 

  43. T. Asaka, S. Blanchet and M. Shaposhnikov, The νMSM, dark matter and neutrino masses, Phys. Lett. B 631 (2005) 151 [hep-ph/0503065] [SPIRES].

    ADS  Google Scholar 

  44. M. Shaposhnikov, A possible symmetry of the νMSM, Nucl. Phys. B 763 (2007) 49 [hep-ph/0605047] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. M. Lindner, A. Merle and V. Niro, Soft L e  − L μ  − L τ flavour symmetry breaking and sterile neutrino keV dark matter, JCAP 01 (2011) 034 [arXiv:1011.4950] [SPIRES].

    ADS  Google Scholar 

  46. S.T. Petcov, On pseudoDirac neutrinos, neutrino oscillations and neutrinoless double beta decay, Phys. Lett. B 110 (1982) 245 [SPIRES].

    ADS  Google Scholar 

  47. S.T. Petcov and W. Rodejohann, Flavor symmetry L e  − L μ  − L τ , atmospheric neutrino mixing and CP-violation in the lepton sector, Phys. Rev. D 71 (2005) 073002 [hep-ph/0409135] [SPIRES].

    ADS  Google Scholar 

  48. E.J. Chun, A.S. Joshipura and A.Y. Smirnov, Models of light singlet fermion and neutrino phenomenology, Phys. Lett. B 357 (1995) 608 [hep-ph/9505275] [SPIRES].

    ADS  Google Scholar 

  49. Z.-Z. Xing, Massive and massless neutrinos on unbalanced seesaws, Chin. Phys. C 32 (2008) 96 [arXiv:0706.0052] [SPIRES].

    ADS  Google Scholar 

  50. J.D. Vergados, Y. Giomataris and Y.N. Novikov, On the search of sterile neutrinos by oscillometry measurements, arXiv:1105.3654 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Barry.

Additional information

ArXiv ePrint: 1105.3911

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barry, J., Rodejohann, W. & Zhang, H. Light sterile neutrinos: models and phenomenology. J. High Energ. Phys. 2011, 91 (2011). https://doi.org/10.1007/JHEP07(2011)091

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2011)091

Keywords