Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

One-loop quantum gravity from a worldline viewpoint

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We develop a worldline approach to quantum gravity in D = 4. Using the background field method we consider the covariantly gauge fixed Einstein-Hilbert action with cosmological constant, and find a worldline representation of the differential operators identified by its quadratic approximation. We test it by computing the correct one-loop divergencies. Alternative worldline methods, such as the use of the O(4) spinning particle that is known to describe correctly the propagation of a massless spin 2 particle in D = 4, find obstructions in the coupling to an arbitrary background metric, apparently preventing a more extensive use in perturbative descriptions of quantum gravity. We expect that our model might simplify calculations of one-loop amplitudes with respect to standard quantum field theoretical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Schubert, Perturbative quantum field theory in the string inspired formalism, Phys. Rept. 355 (2001) 73 [hep-th/0101036] [INSPIRE]. arXiv:1304.7135

    Article  ADS  Google Scholar 

  2. F. Bastianelli and A. Zirotti, Worldline formalism in a gravitational background, Nucl. Phys. B 642 (2002) 372 [hep-th/0205182] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. F. Bastianelli, O. Corradini and A. Zirotti, dimensional regularization for N = 1 supersymmetric σ-models and the worldline formalism, Phys. Rev. D 67 (2003) 104009 [hep-th/0211134] [INSPIRE].

    ADS  Google Scholar 

  4. F. Bastianelli, P. Benincasa and S. Giombi, Worldline approach to vector and antisymmetric tensor fields, JHEP 04 (2005) 010 [hep-th/0503155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. F. Bastianelli, P. Benincasa and S. Giombi, Worldline approach to vector and antisymmetric tensor fields. II, JHEP 10 (2005) 114 [hep-th/0510010] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. F. Bastianelli and C. Schubert, One loop photon-graviton mixing in an electromagnetic field. Part 1, JHEP 02 (2005) 069 [gr-qc/0412095] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. V. Gershun and V. Tkach, classical and quantum dynamics of particles with arbitrary spin, JETP Lett. 29 (1979) 288 [Pisma Zh. Eksp. Teor. Fiz. 29 (1979) 320] [INSPIRE].

    ADS  Google Scholar 

  8. P.S. Howe, S. Penati, M. Pernici and P.K. Townsend, A particle mechanics description of antisymmetric tensor fields, Class. Quant. Grav. 6 (1989) 1125 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. S. Kuzenko and Z. Yarevskaya, Conformal invariance, N extended supersymmetry and massless spinning particles in anti-de Sitter space, Mod. Phys. Lett. A 11 (1996) 1653 [hep-th/9512115] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. F. Bastianelli, O. Corradini and E. Latini, Spinning particles and higher spin fields on (A)dS backgrounds, JHEP 11 (2008) 054 [arXiv:0810.0188] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. P. Dai, Y.-t. Huang and W. Siegel, Worldgraph Approach to Yang-Mills amplitudes from N =2 Spinning Particle, JHEP 10(2008) 027 [arXiv:0807.0391][INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. G. ’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Annales Poincare Phys. Theor. A 20 (1974) 69 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. S. Christensen and M. Duff, Quantizing gravity with a cosmological constant, Nucl. Phys. B 170 (1980) 480 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. G. de Berredo-Peixoto, A. Penna-Firme and I.L. Shapiro, One loop divergences of quantum gravity using conformal parametrization, Mod. Phys. Lett. A 15 (2000) 2335 [gr-qc/0103043] [INSPIRE].

    ADS  Google Scholar 

  15. F. Bastianelli, R. Bonezzi, O. Corradini and E. Latini, Effective action for higher spin fields on (A)dS backgrounds, JHEP 12 (2012) 113 [arXiv:1210.4649] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M. Duff and P. van Nieuwenhuizen, Quantum inequivalence of different field representations, Phys. Lett. B 94 (1980) 179 [INSPIRE].

    ADS  Google Scholar 

  17. G. Gibbons, S. Hawking and M. Perry, Path integrals and the indefiniteness of the gravitational action, Nucl. Phys. B 138 (1978) 141 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. P.O. Mazur and E. Mottola, The gravitational measure, solution of the conformal factor problem and stability of the ground state of quantum gravity, Nucl. Phys. B 341 (1990) 187 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. H. Kleinert and A. Chervyakov, Reparametrization invariance of path integrals, Phys. Lett. B 464 (1999) 257 [hep-th/9906156] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. F. Bastianelli, O. Corradini and P. van Nieuwenhuizen, Dimensional regularization of the path integral in curved space on an infinite time interval, Phys. Lett. B 490 (2000) 154 [hep-th/0007105] [INSPIRE].

    ADS  Google Scholar 

  21. F. Bastianelli, O. Corradini and P. van Nieuwenhuizen, Dimensional regularization of nonlinear σ-models on a finite time interval, Phys. Lett. B 494 (2000) 161 [hep-th/0008045] [INSPIRE].

    ADS  Google Scholar 

  22. F. Bastianelli, R. Bonezzi, O. Corradini and E. Latini, Extended SUSY quantum mechanics: transition amplitudes and path integrals, JHEP 06 (2011) 023 [arXiv:1103.3993] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. F. Bastianelli, The path integral for a particle in curved spaces and Weyl anomalies, Nucl. Phys. B 376 (1992) 113 [hep-th/9112035] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. F. Bastianelli and P. van Nieuwenhuizen, Trace anomalies from quantum mechanics, Nucl. Phys. B 389 (1993) 53 [hep-th/9208059] [INSPIRE].

    Article  ADS  Google Scholar 

  25. U. Muller, C. Schubert and A.M. van de Ven, A closed formula for the Riemann normal coordinate expansion, Gen. Rel. Grav. 31 (1999) 1759 [gr-qc/9712092] [INSPIRE].

    Article  ADS  Google Scholar 

  26. F. Bastianelli and O. Corradini, 6 − D trace anomalies from quantum mechanical path integrals, Phys. Rev. D 63 (2001) 065005 [hep-th/0010118] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. F. Bastianelli and P. van Nieuwenhuizen, Path integrals and anomalies in curved space, Cambridge University Press, Cambridge U.K. (2006).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Bonezzi.

Additional information

ArXiv ePrint: 1304.7135

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastianelli, F., Bonezzi, R. One-loop quantum gravity from a worldline viewpoint. J. High Energ. Phys. 2013, 16 (2013). https://doi.org/10.1007/JHEP07(2013)016

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)016

Keywords