Abstract
A light fermionic weakly interacting massive particle (WIMP) dark matter is investigated by studying its minimal renormalizable model, where it requires a scalar mediator to have an interaction between the WIMP and standard model particles. We perform a comprehensive likelihood analysis of the model involving the latest but robust constraints and those will be obtained in the near future. In addition, we pay particular attention to properly take the kinematically equilibrium condition into account. It is shown that near-future experiments and observations such as low-mass direct dark matter detections, flavor experiments and CMB observations play important roles to test the model. Still, a wide parameter region will remain even if no WIMP and mediator signals are detected there. We also show that precise Higgs boson measurements at future lepton colliders will significantly test this remaining region.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
J.R. Ellis, K. Enqvist, D.V. Nanopoulos and F. Zwirner, Observables in low-energy superstring models, Mod. Phys. Lett.A 1 (1986) 57 [INSPIRE].
R. Barbieri and G.F. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys.B 306 (1988) 63 [INSPIRE].
J. Bernstein, L.S. Brown and G. Feinberg, The cosmological heavy neutrino problem revisited, Phys. Rev.D 32 (1985) 3261 [INSPIRE].
M. Srednicki, R. Watkins and K.A. Olive, Calculations of relic densities in the early universe, Nucl. Phys.B 310 (1988) 693 [INSPIRE].
C. Boehm, T.A. Ensslin and J. Silk, Can annihilating dark matter be lighter than a few GeVs?, J. Phys.G 30 (2004) 279 [astro-ph/0208458] [INSPIRE].
C. Boehm, D. Hooper, J. Silk, M. Casse and J. Paul, MeV dark matter: has it been detected?, Phys. Rev. Lett.92 (2004) 101301 [astro-ph/0309686] [INSPIRE].
H. Murayama and J. Shu, Topological dark matter, Phys. Lett.B 686 (2010) 162 [arXiv:0905.1720] [INSPIRE].
T. Hambye and M.H.G. Tytgat, Confined hidden vector dark matter, Phys. Lett.B 683 (2010) 39 [arXiv:0907.1007] [INSPIRE].
K. Hamaguchi, E. Nakamura, S. Shirai and T.T. Yanagida, Low-scale gauge mediation and composite messenger dark matter, JHEP04 (2010) 119 [arXiv:0912.1683] [INSPIRE].
O. Antipin, M. Redi and A. Strumia, Dynamical generation of the weak and dark matter scales from strong interactions, JHEP01 (2015) 157 [arXiv:1410.1817] [INSPIRE].
O. Antipin, M. Redi, A. Strumia and E. Vigiani, Accidental composite dark matter, JHEP07 (2015) 039 [arXiv:1503.08749] [INSPIRE].
R. Huo, S. Matsumoto, Y.-L. Sming Tsai and T.T. Yanagida, A scenario of heavy but visible baryonic dark matter, JHEP09 (2016) 162 [arXiv:1506.06929] [INSPIRE].
S. Kanemura, S. Matsumoto, T. Nabeshima and N. Okada, Can WIMP dark matter overcome the nightmare scenario?, Phys. Rev.D 82 (2010) 055026 [arXiv:1005.5651] [INSPIRE].
L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a Standard Model like Higgs at 125 GeV, Phys. Lett.B 716 (2012) 179 [arXiv:1203.2064] [INSPIRE].
A. Djouadi, A. Falkowski, Y. Mambrini and J. Quevillon, Direct detection of Higgs-portal dark matter at the LHC, Eur. Phys. J.C 73 (2013) 2455 [arXiv:1205.3169] [INSPIRE].
K. Cheung, Y.-L.S. Tsai, P.-Y. Tseng, T.-C. Yuan and A. Zee, Global study of the simplest scalar phantom dark matter model, JCAP10 (2012) 042 [arXiv:1207.4930] [INSPIRE].
A. Falkowski, C. Gross and O. Lebedev, A second Higgs from the Higgs portal, JHEP05 (2015) 057 [arXiv:1502.01361] [INSPIRE].
V. Barger, M. McCaskey and G. Shaughnessy, Complex scalar dark matter vis-à-vis CoGeNT, DAMA/LIBRA and XENON100, Phys. Rev.D 82 (2010) 035019 [arXiv:1005.3328] [INSPIRE].
M. Gonderinger, H. Lim and M.J. Ramsey-Musolf, Complex scalar singlet dark matter: vacuum stability and phenomenology, Phys. Rev.D 86 (2012) 043511 [arXiv:1202.1316] [INSPIRE].
M. Vogelsberger, J. Zavala and A. Loeb, Subhaloes in self-interacting galactic dark matter haloes, Mon. Not. Roy. Astron. Soc.423 (2012) 3740 [arXiv:1201.5892] [INSPIRE].
M. Rocha et al., Cosmological simulations with self-interacting dark matter I: constant density cores and substructure, Mon. Not. Roy. Astron. Soc.430 (2013) 81 [arXiv:1208.3025] [INSPIRE].
A.H.G. Peter, M. Rocha, J.S. Bullock and M. Kaplinghat, Cosmological simulations with self-interacting dark matter II: halo shapes vs. observations, Mon. Not. Roy. Astron. Soc.430 (2013) 105 [arXiv:1208.3026] [INSPIRE].
M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett.B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].
M. Pospelov and A. Ritz, Astrophysical signatures of secluded dark matter, Phys. Lett.B 671 (2009) 391 [arXiv:0810.1502] [INSPIRE].
O. Bertolami and R. Rosenfeld, The Higgs portal and an unified model for dark energy and dark matter, Int. J. Mod. Phys.A 23 (2008) 4817 [arXiv:0708.1784] [INSPIRE].
S. Matsumoto et al., Observing the coupling between dark matter and Higgs boson at the ILC, in International Linear Collider Workshop (LCWS10 and ILC10), Beijing, China, 26–30 March 2010 [arXiv:1006.5268] [INSPIRE].
S. Kanemura, S. Matsumoto, T. Nabeshima and H. Taniguchi, Testing Higgs portal dark matter via Z fusion at a linear collider, Phys. Lett.B 701 (2011) 591 [arXiv:1102.5147] [INSPIRE].
A. Kamada, M. Yamada and T.T. Yanagida, Self-interacting dark matter with a vector mediator: kinetic mixing with the \( \mathrm{U}{(1)}_{{\left(B-L\right)}_3} \)gauge boson, JHEP03 (2019) 021 [arXiv:1811.02567] [INSPIRE].
A. Kamada, K. Kaneta, K. Yanagi and H.-B. Yu, Self-interacting dark matter and muon g − 2 in a gauged \( \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \)model, JHEP06 (2018) 117 [arXiv:1805.00651] [INSPIRE].
B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].
Y.G. Kim and K.Y. Lee, The minimal model of fermionic dark matter, Phys. Rev.D 75 (2007) 115012 [hep-ph/0611069] [INSPIRE].
A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett.B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].
M. Pospelov and A. Ritz, Higgs decays to dark matter: beyond the minimal model, Phys. Rev.D 84 (2011) 113001 [arXiv:1109.4872] [INSPIRE].
S. Baek, P. Ko and W.-I. Park, Search for the Higgs portal to a singlet fermionic dark matter at the LHC, JHEP02 (2012) 047 [arXiv:1112.1847] [INSPIRE].
S. Esch, M. Klasen and C.E. Yaguna, Detection prospects of singlet fermionic dark matter, Phys. Rev.D 88 (2013) 075017 [arXiv:1308.0951] [INSPIRE].
K. Ghorbani, Fermionic dark matter with pseudo-scalar Yukawa interaction, JCAP01 (2015) 015 [arXiv:1408.4929] [INSPIRE].
A. Freitas, S. Westhoff and J. Zupan, Integrating in the Higgs portal to fermion dark matter, JHEP09 (2015) 015 [arXiv:1506.04149] [INSPIRE].
M. Dutra, C.A. de S. Pires and P.S. Rodrigues da Silva, Majorana dark matter through a narrow Higgs portal, JHEP09 (2015) 147 [arXiv:1504.07222] [INSPIRE].
K. Ghorbani and L. Khalkhali, Mono-Higgs signature in a fermionic dark matter model, J. Phys.G 44 (2017) 105004 [arXiv:1608.04559] [INSPIRE].
A. Beniwal, M. Lewicki, M. White and A.G. Williams, Gravitational waves and electroweak baryogenesis in a global study of the extended scalar singlet model, JHEP02 (2019) 183 [arXiv:1810.02380] [INSPIRE].
A. Kamada, M. Yamada, T.T. Yanagida and K. Yonekura, SIMP from a strong U(1) gauge theory with a monopole condensation, Phys. Rev.D 94 (2016) 055035 [arXiv:1606.01628] [INSPIRE].
J.A. Evans, S. Gori and J. Shelton, Looking for the WIMP next door, JHEP02 (2018) 100 [arXiv:1712.03974] [INSPIRE].
The GAMBIT Dark Matter Workgroup collaboration, DarkBit: a GAMBIT module for computing dark matter observables and likelihoods, Eur. Phys. J.C 77 (2017) 831 [arXiv:1705.07920] [INSPIRE].
GAMBIT collaboration, Status of the scalar singlet dark matter model, Eur. Phys. J.C 77 (2017) 568 [arXiv:1705.07931] [INSPIRE].
GAMBIT collaboration, Global analyses of Higgs portal singlet dark matter models using GAMBIT, Eur. Phys. J.C 79 (2019) 38 [arXiv:1808.10465] [INSPIRE].
GAMBIT collaboration, Global fits of GUT-scale SUSY models with GAMBIT, Eur. Phys. J.C 77 (2017) 824 [arXiv:1705.07935] [INSPIRE].
GAMBIT collaboration, A global fit of the MSSM with GAMBIT, Eur. Phys. J.C 77 (2017) 879 [arXiv:1705.07917] [INSPIRE].
P. Athron, J.M. Cornell, F. Kahlhoefer, J. McKay, P. Scott and S. Wild, Impact of vacuum stability, perturbativity and XENON1T on global fits of Z 2and Z 3scalar singlet dark matter, Eur. Phys. J.C 78 (2018) 830 [arXiv:1806.11281] [INSPIRE].
S. Banerjee, S. Matsumoto, K. Mukaida and Y.-L.S. Tsai, WIMP dark matter in a well-tempered regime: a case study on singlet-doublets fermionic WIMP, JHEP11 (2016) 070 [arXiv:1603.07387] [INSPIRE].
S. Matsumoto, S. Mukhopadhyay and Y.-L.S. Tsai, Singlet Majorana fermion dark matter: a comprehensive analysis in effective field theory, JHEP10 (2014) 155 [arXiv:1407.1859] [INSPIRE].
S. Matsumoto, S. Mukhopadhyay and Y.-L.S. Tsai, Effective theory of WIMP dark matter supplemented by simplified models: singlet-like Majorana fermion case, Phys. Rev.D 94 (2016) 065034 [arXiv:1604.02230] [INSPIRE].
G. Krnjaic, Probing light thermal dark-matter with a Higgs portal mediator, Phys. Rev.D 94 (2016) 073009 [arXiv:1512.04119] [INSPIRE].
H. Leutwyler and M.A. Shifman, Goldstone bosons generate peculiar conformal anomalies, Phys. Lett.B 221 (1989) 384 [INSPIRE].
A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the Standard Model and its supersymmetric extension, Comput. Phys. Commun.108 (1998) 56 [hep-ph/9704448] [INSPIRE].
J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunter’s guide, Front. Phys.80 (2000) 1 [INSPIRE].
J.F. Donoghue, J. Gasser and H. Leutwyler, The decay of a light Higgs boson, Nucl. Phys.B 343 (1990) 341 [INSPIRE].
M.W. Winkler, Decay and detection of a light scalar boson mixing with the Higgs boson, Phys. Rev.D 99 (2019) 015018 [arXiv:1809.01876] [INSPIRE].
J.D. Clarke, R. Foot and R.R. Volkas, Phenomenology of a very light scalar (100 MeV < m h< 10 GeV) mixing with the SM Higgs, JHEP02 (2014) 123 [arXiv:1310.8042] [INSPIRE].
E. Duchovni, E. Gross and G. Mikenberg, Motivation and technique for light Higgs boson search, Phys. Rev.D 39 (1989) 365 [INSPIRE].
T.N. Truong and R.S. Willey, Branching ratios for decays of light Higgs bosons, Phys. Rev.D 40 (1989) 3635 [INSPIRE].
T.R. Slatyer, Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results, Phys. Rev.D 93 (2016) 023527 [arXiv:1506.03811] [INSPIRE].
ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s} \) = 7 and 8 TeV, JHEP08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
Planck collaboration, Planck 2015 results VII. High frequency instrument data processing: time-ordered information and beams, Astron. Astrophys.594 (2016) A7 [arXiv:1502.01586] [INSPIRE].
XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett.121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
CRESST collaboration, First results on low-mass dark matter from the CRESST-III experiment, in 15thInternational Conference on Topics in Astroparticle and Underground Physics (TAUP 2017), Sudbury, ON, Canada, 24–28 July 2017 [arXiv:1711.07692] [INSPIRE].
G. Gerbier et al., NEWS: a new spherical gas detector for very low mass WIMP detection, arXiv:1401.7902 [INSPIRE].
NEWS-G collaboration webpage, https://news-g.org/.
PandaX-II collaboration, Dark matter results from first 98.7 days of data from the PandaX-II experiment, Phys. Rev. Lett.117 (2016) 121303 [arXiv:1607.07400] [INSPIRE].
SuperCDMS collaboration, New results from the search for low-mass weakly interacting massive particles with the CDMS low ionization threshold experiment, Phys. Rev. Lett.116 (2016) 071301 [arXiv:1509.02448] [INSPIRE].
SuperCDMS collaboration, Projected sensitivity of the SuperCDMS SNOLAB experiment, Phys. Rev.D 95 (2017) 082002 [arXiv:1610.00006] [INSPIRE].
NEWS-G collaboration, First results from the NEWS-G direct dark matter search experiment at the LSM, Astropart. Phys.97 (2018) 54 [arXiv:1706.04934] [INSPIRE].
DarkSide collaboration, Low-mass dark matter search with the DarkSide-50 experiment, Phys. Rev. Lett.121 (2018) 081307 [arXiv:1802.06994] [INSPIRE].
LZ collaboration, LUX-ZEPLIN (LZ) conceptual design report, arXiv:1509.02910 [INSPIRE].
LUX, LZ collaboration, The present and future of searching for dark matter with LUX and LZ, PoS(ICHEP2016)220 (2016) [arXiv:1611.05525] [INSPIRE].
Planck collaboration, Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys.571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
CMB-S4 collaboration, CMB-S4 science book, first edition, arXiv:1610.02743 [INSPIRE].
G. Bélanger, F. Boudjema and A. Pukhov, MicrOMEGAs: a code for the calculation of dark matter properties in generic models of particle interaction, in The Dark Secrets of the Terascale: proceedings, TASI 2011, Boulder, CO, U.S.A., 6 June–11 July 2011, World Scientific, Singapore (2013), pg. 739 [arXiv:1402.0787] [INSPIRE].
M. Drees, F. Hajkarim and E.R. Schmitz, The effects of QCD equation of state on the relic density of WIMP dark matter, JCAP06 (2015) 025 [arXiv:1503.03513] [INSPIRE].
J. Hisano, S. Matsumoto and M.M. Nojiri, Explosive dark matter annihilation, Phys. Rev. Lett.92 (2004) 031303 [hep-ph/0307216] [INSPIRE].
J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and γ ray signature from galactic center, Phys. Rev.D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].
J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett.B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].
S. Tulin, H.-B. Yu and K.M. Zurek, Resonant dark forces and small scale structure, Phys. Rev. Lett.110 (2013) 111301 [arXiv:1210.0900] [INSPIRE].
S. Tulin, H.-B. Yu and K.M. Zurek, Beyond collisionless dark matter: particle physics dynamics for dark matter halo structure, Phys. Rev.D 87 (2013) 115007 [arXiv:1302.3898] [INSPIRE].
M. Kaplinghat, S. Tulin and H.-B. Yu, Direct detection portals for self-interacting dark matter, Phys. Rev.D 89 (2014) 035009 [arXiv:1310.7945] [INSPIRE].
K. Kainulainen, K. Tuominen and V. Vaskonen, Self-interacting dark matter and cosmology of a light scalar mediator, Phys. Rev.D 93 (2016) 015016 [Erratum ibid.D 95 (2017) 079901] [arXiv:1507.04931] [INSPIRE].
F. Kahlhoefer, K. Schmidt-Hoberg and S. Wild, Dark matter self-interactions from a general spin-0 mediator, JCAP08 (2017) 003 [arXiv:1704.02149] [INSPIRE].
T. Binder, T. Bringmann, M. Gustafsson and A. Hryczuk, Early kinetic decoupling of dark matter: when the standard way of calculating the thermal relic density fails, Phys. Rev.D 96 (2017) 115010 [arXiv:1706.07433] [INSPIRE].
PandaX-II collaboration, Dark matter results from 54-ton-day exposure of PandaX-II experiment, Phys. Rev. Lett.119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
Z. Liu, Y. Su, Y.-L. Sming Tsai, B. Yu and Q. Yuan, A combined analysis of PandaX, LUX and XENON1T experiments within the framework of dark matter effective theory, JHEP11 (2017) 024 [arXiv:1708.04630] [INSPIRE].
A.D. Dolgov, Neutrinos in cosmology, Phys. Rept.370 (2002) 333 [hep-ph/0202122] [INSPIRE].
M. Ibe, A. Kamada, S. Kobayashi and W. Nakano, Composite asymmetric dark matter with a dark photon portal, JHEP11 (2018) 203 [arXiv:1805.06876] [INSPIRE].
Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
J. Berger, K. Jedamzik and D.G.E. Walker, Cosmological constraints on decoupled dark photons and dark Higgs, JCAP11 (2016) 032 [arXiv:1605.07195] [INSPIRE].
M. Hufnagel, K. Schmidt-Hoberg and S. Wild, BBN constraints on MeV-scale dark sectors. Part II. Electromagnetic decays, JCAP11 (2018) 032 [arXiv:1808.09324] [INSPIRE].
A. Fradette and M. Pospelov, BBN for the LHC: constraints on lifetimes of the Higgs portal scalars, Phys. Rev.D 96 (2017) 075033 [arXiv:1706.01920] [INSPIRE].
W. Hu and J. Silk, Thermalization and spectral distortions of the cosmic background radiation, Phys. Rev.D 48 (1993) 485 [INSPIRE].
E. Masso and R. Toldra, New constraints on a light spinless particle coupled to photons, Phys. Rev.D 55 (1997) 7967 [hep-ph/9702275] [INSPIRE].
Kamiokande-II collaboration, Observation of a neutrino burst from the supernova SN 1987A, Phys. Rev. Lett.58 (1987) 1490 [INSPIRE].
J.H. Chang, R. Essig and S.D. McDermott, Revisiting supernova 1987A constraints on dark photons, JHEP01 (2017) 107 [arXiv:1611.03864] [INSPIRE].
J.H. Chang, R. Essig and S.D. McDermott, Supernova 1987A constraints on sub-GeV dark sectors, millicharged particles, the QCD axion and an axion-like particle, JHEP09 (2018) 051 [arXiv:1803.00993] [INSPIRE].
C. Mahoney, A.K. Leibovich and A.R. Zentner, Updated constraints on self-interacting dark matter from supernova 1987A, Phys. Rev.D 96 (2017) 043018 [arXiv:1706.08871] [INSPIRE].
T. Fischer, S. Chakraborty, M. Giannotti, A. Mirizzi, A. Payez and A. Ringwald, Probing axions with the neutrino signal from the next galactic supernova, Phys. Rev.D 94 (2016) 085012 [arXiv:1605.08780] [INSPIRE].
H. Tu and K.-W. Ng, Supernovae and Weinberg’s Higgs portal dark radiation and dark matter, JHEP07 (2017) 108 [arXiv:1706.08340] [INSPIRE].
A. Sung, H. Tu and M.-R. Wu, New constraint from supernova explosions on light particles beyond the Standard Model, Phys. Rev.D 99 (2019) 121305 [arXiv:1903.07923] [INSPIRE].
D.H. Weinberg, J.S. Bullock, F. Governato, R. Kuzio de Naray and A.H.G. Peter, Cold dark matter: controversies on small scales, Proc. Nat. Acad. Sci.112 (2015) 12249 [arXiv:1306.0913] [INSPIRE].
S. Tulin and H.-B. Yu, Dark matter self-interactions and small scale structure, Phys. Rept.730 (2018) 1 [arXiv:1705.02358] [INSPIRE].
CLEO collaboration, Search for very light CP-odd Higgs boson in radiative decays of ϒ(1S), Phys. Rev. Lett.101 (2008) 151802 [arXiv:0807.1427] [INSPIRE].
BaBar collaboration, Search for di-muon decays of a low-mass Higgs boson in radiative decays of the ϒ(1S), Phys. Rev.D 87 (2013) 031102 [Erratum ibid.D 87 (2013) 059903] [arXiv:1210.0287] [INSPIRE].
BaBar collaboration, Search for a low-mass scalar Higgs boson decaying to a tau pair in single-photon decays of ϒ(1S), Phys. Rev.D 88 (2013) 071102 [arXiv:1210.5669] [INSPIRE].
Belle collaboration, Measurement of the differential branching fraction and forward-backword asymmetry for B → K (*)ℓ +ℓ −, Phys. Rev. Lett.103 (2009) 171801 [arXiv:0904.0770] [INSPIRE].
Belle collaboration, Search for \( B\to {h}^{\left(\ast \right)}\nu \overline{\nu} \)decays at Belle, Phys. Rev. Lett.99 (2007) 221802 [arXiv:0707.0138] [INSPIRE].
LHCb collaboration, Differential branching fraction and angular analysis of the B + → K +μ +μ −decay, JHEP02 (2013) 105 [arXiv:1209.4284] [INSPIRE].
LHCb collaboration, Search for hidden-sector bosons in B 0 → K *0μ +μ −decays, Phys. Rev. Lett.115 (2015) 161802 [arXiv:1508.04094] [INSPIRE].
LHCb collaboration, Search for long-lived scalar particles in B + → K +χ(μ +μ −) decays, Phys. Rev.D 95 (2017) 071101 [arXiv:1612.07818] [INSPIRE].
T. Aushev et al., Physics at super B factory, arXiv:1002.5012 [INSPIRE].
E. Manoni, Studies of missing energy decays of B meson at Belle II, presented at EPS HEP 2017, Venice, Italy, July 2017.
BaBar collaboration, Search for long-lived particles in e +e −collisions, Phys. Rev. Lett.114 (2015) 171801 [arXiv:1502.02580] [INSPIRE].
BaBar collaboration, Direct CP, lepton flavor and isospin asymmetries in the decays B → K (*)ℓ +ℓ −, Phys. Rev. Lett.102(2009) 091803 [arXiv:0807.4119] [INSPIRE].
BaBar collaboration, Search for the rare decay \( B\to K\nu \overline{\nu} \), Phys. Rev.D 82 (2010) 112002 [arXiv:1009.1529] [INSPIRE].
BaBar collaboration, Search for \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \)and invisible quarkonium decays, Phys. Rev.D 87 (2013) 112005 [arXiv:1303.7465] [INSPIRE].
J. Albrecht, F. Bernlochner, M. Kenzie, S. Reichert, D. Straub and A. Tully, Future prospects for exploring present day anomalies in flavour physics measurements with Belle II and LHCb, arXiv:1709.10308 [INSPIRE].
NA48/2 collaboration, New measurement of the K ± → π ±μ +μ −decay, Phys. Lett.B 697 (2011) 107 [arXiv:1011.4817] [INSPIRE].
KTEV collaboration, Search for the decay K L → π 0μ +μ −, Phys. Rev. Lett.84 (2000) 5279 [hep-ex/0001006] [INSPIRE].
KTeV collaboration, Search for the rare decay K L → π 0e +e −, Phys. Rev. Lett.93 (2004) 021805 [hep-ex/0309072] [INSPIRE].
BNL-E949 collaboration, Study of the decay \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \)in the momentum region 140 < P π< 199 MeV/c, Phys. Rev.D 79 (2009) 092004 [arXiv:0903.0030] [INSPIRE].
S. Martellotti, The NA62 experiment at CERN, in Proceedings, 12thConference on the Intersections of Particle and Nuclear Physics (CIPANP 2015), Vail, CO, U.S.A., 19–24 May 2015 [arXiv:1510.00172] [INSPIRE].
NA62 collaboration, Results and perspectives from the NA62 experiment at CERN, Nuovo Cim.C 39 (2016) 322 [INSPIRE].
CHARM collaboration, Search for axion like particle production in 400 GeV proton-copper interactions, Phys. Lett.B 157 (1985) 458 [INSPIRE].
F. Bezrukov and D. Gorbunov, Light inflaton hunter’s guide, JHEP05 (2010) 010 [arXiv:0912.0390] [INSPIRE].
E391a collaboration, Experimental study of the decay \( {K}_L^0\to {\pi}^0\nu \overline{\nu} \), Phys. Rev.D 81 (2010) 072004 [arXiv:0911.4789] [INSPIRE].
S. Alekhin et al., A facility to search for hidden particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys.79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].
KOTO collaboration, Present status of the search for the \( {K}_L^0\to {\pi}^0\nu \overline{\nu} \)decay with the KOTO detector at J-PARC, in Proceedings, Meeting of the APS Division of Particles and Fields (DPF 2017), Fermilab, Batavia, IL, U.S.A., 31 July–4 August 2017 [arXiv:1710.01412] [INSPIRE].
CMS collaboration, Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, JHEP10 (2017) 076 [arXiv:1701.02032] [INSPIRE].
ATLAS collaboration, Search for Higgs boson decays to beyond-the-Standard-Model light bosons in four-lepton events with the ATLAS detector at \( \sqrt{s} \) = 13 TeV, JHEP06 (2018) 166 [arXiv:1802.03388] [INSPIRE].
J.D. Clarke, Constraining portals with displaced Higgs decay searches at the LHC, JHEP10 (2015) 061 [arXiv:1505.00063] [INSPIRE].
K. Cheung, J.S. Lee and P.-Y. Tseng, Higgs precision analysis updates 2014, Phys. Rev.D 90 (2014) 095009 [arXiv:1407.8236] [INSPIRE].
CMS collaboration, Projected performance of an upgraded CMS detector at the LHC and HL-LHC: contribution to the Snowmass process, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, U.S.A., 29 July–6 August 2013 [arXiv:1307.7135] [INSPIRE].
P. Bechtle, S. Heinemeyer, O. St al, T. Stefaniak and G. Weiglein, Probing the Standard Model with Higgs signal rates from the Tevatron, the LHC and a future ILC, JHEP11 (2014) 039 [arXiv:1403.1582] [INSPIRE].
L3 collaboration, Search for neutral Higgs boson production through the process e +e − → Z *H 0, Phys. Lett.B 385 (1996) 454 [INSPIRE].
Particle Data Group collaboration, Review of particle physics, Chin. Phys.C 38 (2014) 090001 [INSPIRE].
M.J. Dolan, F. Kahlhoefer, C. McCabe and K. Schmidt-Hoberg, A taste of dark matter: flavour constraints on pseudoscalar mediators, JHEP03 (2015) 171 [Erratum ibid.07 (2015) 103] [arXiv:1412.5174] [INSPIRE].
A. Ali, E. Lunghi, C. Greub and G. Hiller, Improved model independent analysis of semileptonic and radiative rare B decays, Phys. Rev.D 66 (2002) 034002 [hep-ph/0112300] [INSPIRE].
W.J. Marciano and Z. Parsa, Rare kaon decays with “missing energy”, Phys. Rev.D 53 (1996) R1 [INSPIRE].
ATLAS collaboration, Search for long-lived neutral particles decaying into lepton jets in proton-proton collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP11 (2014) 088 [arXiv:1409.0746] [INSPIRE].
ALEPH collaboration, Search for a nonminimal Higgs boson produced in the reaction e +e − → hZ *, Phys. Lett.B 313 (1993) 312 [INSPIRE].
OPAL collaboration, Decay mode independent searches for new scalar bosons with the OPAL detector at LEP, Eur. Phys. J.C 27 (2003) 311 [hep-ex/0206022] [INSPIRE].
CMS collaboration, Measurements of inclusive and differential Z boson production cross sections in pp collisions at \( \sqrt{s} \) = 13 TeV, CMS-PAS-SMP-15-011, CERN, Geneva, Switzerland (2015).
D. Foreman-Mackey, D.W. Hogg, D. Lang and J. Goodman, emcee: the MCMC hammer, Publ. Astron. Soc. Pac.125 (2013) 306 [arXiv:1202.3665] [INSPIRE].
F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc.398 (2009) 1601 [arXiv:0809.3437] [INSPIRE].
K. Fujii et al., Physics case for the 250 GeV stage of the International Linear Collider, arXiv:1710.07621 [INSPIRE].
M. Ahmad et al., CEPC-SPPC preliminary conceptual design report. 1. Physics and detector, IHEP-CEPC-DR-2015-01, (2015) [IHEP-TH-2015-01] [IHEP-EP-2015-01] [INSPIRE].
D. d’Enterria, Physics case of FCC-ee, Frascati Phys. Ser.61 (2016) 17 [arXiv:1601.06640] [INSPIRE].
C. Boehm, M.J. Dolan and C. McCabe, A lower bound on the mass of cold thermal dark matter from Planck, JCAP08 (2013) 041 [arXiv:1303.6270] [INSPIRE].
P. Gondolo, J. Hisano and K. Kadota, The effect of quark interactions on dark matter kinetic decoupling and the mass of the smallest dark halos, Phys. Rev.D 86 (2012) 083523 [arXiv:1205.1914] [INSPIRE].
T. Binder, L. Covi, A. Kamada, H. Murayama, T. Takahashi and N. Yoshida, Matter power spectrum in hidden neutrino interacting dark matter models: a closer look at the collision term, JCAP11 (2016) 043 [arXiv:1602.07624] [INSPIRE].
P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: improved analysis, Nucl. Phys.B 360 (1991) 145 [INSPIRE].
T. Bhattacharya et al., QCD phase transition with chiral quarks and physical quark masses, Phys. Rev. Lett.113 (2014) 082001 [arXiv:1402.5175] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1811.03292
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Matsumoto, S., Tsai, YL.S. & Tseng, PY. Light fermionic WIMP dark matter with light scalar mediator. J. High Energ. Phys. 2019, 50 (2019). https://doi.org/10.1007/JHEP07(2019)050
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2019)050